{"title":"扭曲马祖尔图案卫星结和镶边花理论","authors":"I. Petkova, Biji Wong","doi":"10.1307/mmj/20205927","DOIUrl":null,"url":null,"abstract":"We use bordered Floer theory to study properties of twisted Mazur pattern satellite knots $Q_{n}(K)$. We prove that $Q_n(K)$ is not Floer homologically thin, with two exceptions. We calculate the 3-genus of $Q_{n}(K)$ in terms of the twisting parameter $n$ and the 3-genus of the companion $K$, and we determine when $Q_n(K)$ is fibered. As an application to our results on Floer thickness and 3-genus, we verify the Cosmetic Surgery Conjecture for many of these satellite knots.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Twisted Mazur Pattern Satellite Knots & Bordered Floer Theory\",\"authors\":\"I. Petkova, Biji Wong\",\"doi\":\"10.1307/mmj/20205927\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We use bordered Floer theory to study properties of twisted Mazur pattern satellite knots $Q_{n}(K)$. We prove that $Q_n(K)$ is not Floer homologically thin, with two exceptions. We calculate the 3-genus of $Q_{n}(K)$ in terms of the twisting parameter $n$ and the 3-genus of the companion $K$, and we determine when $Q_n(K)$ is fibered. As an application to our results on Floer thickness and 3-genus, we verify the Cosmetic Surgery Conjecture for many of these satellite knots.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1307/mmj/20205927\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1307/mmj/20205927","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Twisted Mazur Pattern Satellite Knots & Bordered Floer Theory
We use bordered Floer theory to study properties of twisted Mazur pattern satellite knots $Q_{n}(K)$. We prove that $Q_n(K)$ is not Floer homologically thin, with two exceptions. We calculate the 3-genus of $Q_{n}(K)$ in terms of the twisting parameter $n$ and the 3-genus of the companion $K$, and we determine when $Q_n(K)$ is fibered. As an application to our results on Floer thickness and 3-genus, we verify the Cosmetic Surgery Conjecture for many of these satellite knots.