扭曲马祖尔图案卫星结和镶边花理论

Pub Date : 2020-05-26 DOI:10.1307/mmj/20205927
I. Petkova, Biji Wong
{"title":"扭曲马祖尔图案卫星结和镶边花理论","authors":"I. Petkova, Biji Wong","doi":"10.1307/mmj/20205927","DOIUrl":null,"url":null,"abstract":"We use bordered Floer theory to study properties of twisted Mazur pattern satellite knots $Q_{n}(K)$. We prove that $Q_n(K)$ is not Floer homologically thin, with two exceptions. We calculate the 3-genus of $Q_{n}(K)$ in terms of the twisting parameter $n$ and the 3-genus of the companion $K$, and we determine when $Q_n(K)$ is fibered. As an application to our results on Floer thickness and 3-genus, we verify the Cosmetic Surgery Conjecture for many of these satellite knots.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Twisted Mazur Pattern Satellite Knots & Bordered Floer Theory\",\"authors\":\"I. Petkova, Biji Wong\",\"doi\":\"10.1307/mmj/20205927\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We use bordered Floer theory to study properties of twisted Mazur pattern satellite knots $Q_{n}(K)$. We prove that $Q_n(K)$ is not Floer homologically thin, with two exceptions. We calculate the 3-genus of $Q_{n}(K)$ in terms of the twisting parameter $n$ and the 3-genus of the companion $K$, and we determine when $Q_n(K)$ is fibered. As an application to our results on Floer thickness and 3-genus, we verify the Cosmetic Surgery Conjecture for many of these satellite knots.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1307/mmj/20205927\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1307/mmj/20205927","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

利用有边花理论研究了扭曲Mazur型卫星结Q_{n}(K)$的性质。我们证明$Q_n(K)$不是花同源薄的,有两个例外。我们根据扭转参数$n$计算$Q_{n}(K)$的3格和伴随$K$的3格,并确定$Q_n(K)$何时被纤维化。作为对花厚度和3属结果的应用,我们验证了许多这些卫星结的整容手术猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Twisted Mazur Pattern Satellite Knots & Bordered Floer Theory
We use bordered Floer theory to study properties of twisted Mazur pattern satellite knots $Q_{n}(K)$. We prove that $Q_n(K)$ is not Floer homologically thin, with two exceptions. We calculate the 3-genus of $Q_{n}(K)$ in terms of the twisting parameter $n$ and the 3-genus of the companion $K$, and we determine when $Q_n(K)$ is fibered. As an application to our results on Floer thickness and 3-genus, we verify the Cosmetic Surgery Conjecture for many of these satellite knots.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信