{"title":"相变材料液体冷却梯形电池组的电池热管理系统","authors":"P.S.N. Masthan Vali, M. G.","doi":"10.1115/1.4063355","DOIUrl":null,"url":null,"abstract":"\n Electric vehicles (EVs) have grown in popularity in recent years due to their environmental friendliness and the potential scarcity of fossil fuels. Lithium-ion batteries (LIBs) are commonly utilized in EVs and hybrid electric vehicles (HEVs). They have a high specific charge, a high density of power, and a long life. A revolutionary design of a trapezoidal battery pack with a liquid cooling system based on composite phase change material (CPCM) is proposed in this research. The phase change material (PCM) is paraffin wax (PA), and the high thermal conductivity particles are graphite powder (GSP). CPCM is made in three different compositions and is filled in between cells with a 5mm gap. Because PCM has a low thermal conductivity, it is filled with GSP, a high thermal conductive particle. The thermal conductivity is increased from 0.25 to 2.7 W/m K, which increases the heat transfer rate significantly. By adjusting different coolant flow velocities at varied discharge rates, the performance of the battery pack is examined. During the experiment, the discharge rates of 1C, 2C, and 3C were used at a 28-30 °C ambient temperature. According to the findings, a trapezoidal battery pack based on CPCM exhibits a more efficient rate of heat transfer than a battery pack based on PCM. Moreover, BTMS with a liquid cooling system achieves consistent temperature distribution, with the maximum temperature remaining within the ideal range of below 45°C under all test conditions.","PeriodicalId":15937,"journal":{"name":"Journal of Heat Transfer-transactions of The Asme","volume":" 16","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2023-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Battery Thermal Management System On Trapezoidal Battery Pack With Liquid Cooling System Utilizing Phase Change Material\",\"authors\":\"P.S.N. Masthan Vali, M. G.\",\"doi\":\"10.1115/1.4063355\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Electric vehicles (EVs) have grown in popularity in recent years due to their environmental friendliness and the potential scarcity of fossil fuels. Lithium-ion batteries (LIBs) are commonly utilized in EVs and hybrid electric vehicles (HEVs). They have a high specific charge, a high density of power, and a long life. A revolutionary design of a trapezoidal battery pack with a liquid cooling system based on composite phase change material (CPCM) is proposed in this research. The phase change material (PCM) is paraffin wax (PA), and the high thermal conductivity particles are graphite powder (GSP). CPCM is made in three different compositions and is filled in between cells with a 5mm gap. Because PCM has a low thermal conductivity, it is filled with GSP, a high thermal conductive particle. The thermal conductivity is increased from 0.25 to 2.7 W/m K, which increases the heat transfer rate significantly. By adjusting different coolant flow velocities at varied discharge rates, the performance of the battery pack is examined. During the experiment, the discharge rates of 1C, 2C, and 3C were used at a 28-30 °C ambient temperature. According to the findings, a trapezoidal battery pack based on CPCM exhibits a more efficient rate of heat transfer than a battery pack based on PCM. Moreover, BTMS with a liquid cooling system achieves consistent temperature distribution, with the maximum temperature remaining within the ideal range of below 45°C under all test conditions.\",\"PeriodicalId\":15937,\"journal\":{\"name\":\"Journal of Heat Transfer-transactions of The Asme\",\"volume\":\" 16\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Heat Transfer-transactions of The Asme\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4063355\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Heat Transfer-transactions of The Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4063355","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Battery Thermal Management System On Trapezoidal Battery Pack With Liquid Cooling System Utilizing Phase Change Material
Electric vehicles (EVs) have grown in popularity in recent years due to their environmental friendliness and the potential scarcity of fossil fuels. Lithium-ion batteries (LIBs) are commonly utilized in EVs and hybrid electric vehicles (HEVs). They have a high specific charge, a high density of power, and a long life. A revolutionary design of a trapezoidal battery pack with a liquid cooling system based on composite phase change material (CPCM) is proposed in this research. The phase change material (PCM) is paraffin wax (PA), and the high thermal conductivity particles are graphite powder (GSP). CPCM is made in three different compositions and is filled in between cells with a 5mm gap. Because PCM has a low thermal conductivity, it is filled with GSP, a high thermal conductive particle. The thermal conductivity is increased from 0.25 to 2.7 W/m K, which increases the heat transfer rate significantly. By adjusting different coolant flow velocities at varied discharge rates, the performance of the battery pack is examined. During the experiment, the discharge rates of 1C, 2C, and 3C were used at a 28-30 °C ambient temperature. According to the findings, a trapezoidal battery pack based on CPCM exhibits a more efficient rate of heat transfer than a battery pack based on PCM. Moreover, BTMS with a liquid cooling system achieves consistent temperature distribution, with the maximum temperature remaining within the ideal range of below 45°C under all test conditions.
期刊介绍:
Topical areas including, but not limited to: Biological heat and mass transfer; Combustion and reactive flows; Conduction; Electronic and photonic cooling; Evaporation, boiling, and condensation; Experimental techniques; Forced convection; Heat exchanger fundamentals; Heat transfer enhancement; Combined heat and mass transfer; Heat transfer in manufacturing; Jets, wakes, and impingement cooling; Melting and solidification; Microscale and nanoscale heat and mass transfer; Natural and mixed convection; Porous media; Radiative heat transfer; Thermal systems; Two-phase flow and heat transfer. Such topical areas may be seen in: Aerospace; The environment; Gas turbines; Biotechnology; Electronic and photonic processes and equipment; Energy systems, Fire and combustion, heat pipes, manufacturing and materials processing, low temperature and arctic region heat transfer; Refrigeration and air conditioning; Homeland security systems; Multi-phase processes; Microscale and nanoscale devices and processes.