{"title":"模态逻辑中的对称性","authors":"C. Areces, Guillaume Hoffmann, Ezequiel Orbe","doi":"10.4204/EPTCS.113.6","DOIUrl":null,"url":null,"abstract":"We generalize the notion of symmetries of propositional formulas in conjunctive normal form to modal formulas. Our framework uses the coinductive models and, hence, the results apply to a wide class of modal logics including, for example, hybrid logics. Our main result shows that the symmetries of a modal formula preserve entailment.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2013-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Symmetries in Modal Logics\",\"authors\":\"C. Areces, Guillaume Hoffmann, Ezequiel Orbe\",\"doi\":\"10.4204/EPTCS.113.6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We generalize the notion of symmetries of propositional formulas in conjunctive normal form to modal formulas. Our framework uses the coinductive models and, hence, the results apply to a wide class of modal logics including, for example, hybrid logics. Our main result shows that the symmetries of a modal formula preserve entailment.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2013-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4204/EPTCS.113.6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4204/EPTCS.113.6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We generalize the notion of symmetries of propositional formulas in conjunctive normal form to modal formulas. Our framework uses the coinductive models and, hence, the results apply to a wide class of modal logics including, for example, hybrid logics. Our main result shows that the symmetries of a modal formula preserve entailment.