模态逻辑中的对称性

Pub Date : 2013-03-28 DOI:10.4204/EPTCS.113.6
C. Areces, Guillaume Hoffmann, Ezequiel Orbe
{"title":"模态逻辑中的对称性","authors":"C. Areces, Guillaume Hoffmann, Ezequiel Orbe","doi":"10.4204/EPTCS.113.6","DOIUrl":null,"url":null,"abstract":"We generalize the notion of symmetries of propositional formulas in conjunctive normal form to modal formulas. Our framework uses the coinductive models and, hence, the results apply to a wide class of modal logics including, for example, hybrid logics. Our main result shows that the symmetries of a modal formula preserve entailment.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2013-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Symmetries in Modal Logics\",\"authors\":\"C. Areces, Guillaume Hoffmann, Ezequiel Orbe\",\"doi\":\"10.4204/EPTCS.113.6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We generalize the notion of symmetries of propositional formulas in conjunctive normal form to modal formulas. Our framework uses the coinductive models and, hence, the results apply to a wide class of modal logics including, for example, hybrid logics. Our main result shows that the symmetries of a modal formula preserve entailment.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2013-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4204/EPTCS.113.6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4204/EPTCS.113.6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

将合取范式的命题公式的对称性推广到模态公式。我们的框架使用共归纳模型,因此,结果适用于模态逻辑的广泛类别,包括,例如,混合逻辑。我们的主要结果表明,模态公式的对称性保留了蕴涵。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Symmetries in Modal Logics
We generalize the notion of symmetries of propositional formulas in conjunctive normal form to modal formulas. Our framework uses the coinductive models and, hence, the results apply to a wide class of modal logics including, for example, hybrid logics. Our main result shows that the symmetries of a modal formula preserve entailment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信