{"title":"配分函数形式博弈中Shapley值计算的复杂性","authors":"Oskar Skibski","doi":"10.1613/jair.1.14648","DOIUrl":null,"url":null,"abstract":"We study the complexity of computing the Shapley value in partition function form games. We focus on two representations based on marginal contribution nets (embedded MC-nets and weighted MC-nets) and five extensions of the Shapley value. Our results show that while weighted MC-nets are more concise than embedded MC-nets, they have slightly worse computational properties when it comes to computing the Shapley value: two out of five extensions can be computed in polynomial time for embedded MC-nets and only one for weighted MC-nets.","PeriodicalId":54877,"journal":{"name":"Journal of Artificial Intelligence Research","volume":null,"pages":null},"PeriodicalIF":4.5000,"publicationDate":"2023-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Complexity of Computing the Shapley Value in Partition Function Form Games\",\"authors\":\"Oskar Skibski\",\"doi\":\"10.1613/jair.1.14648\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the complexity of computing the Shapley value in partition function form games. We focus on two representations based on marginal contribution nets (embedded MC-nets and weighted MC-nets) and five extensions of the Shapley value. Our results show that while weighted MC-nets are more concise than embedded MC-nets, they have slightly worse computational properties when it comes to computing the Shapley value: two out of five extensions can be computed in polynomial time for embedded MC-nets and only one for weighted MC-nets.\",\"PeriodicalId\":54877,\"journal\":{\"name\":\"Journal of Artificial Intelligence Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2023-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Artificial Intelligence Research\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1613/jair.1.14648\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Artificial Intelligence Research","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1613/jair.1.14648","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Complexity of Computing the Shapley Value in Partition Function Form Games
We study the complexity of computing the Shapley value in partition function form games. We focus on two representations based on marginal contribution nets (embedded MC-nets and weighted MC-nets) and five extensions of the Shapley value. Our results show that while weighted MC-nets are more concise than embedded MC-nets, they have slightly worse computational properties when it comes to computing the Shapley value: two out of five extensions can be computed in polynomial time for embedded MC-nets and only one for weighted MC-nets.
期刊介绍:
JAIR(ISSN 1076 - 9757) covers all areas of artificial intelligence (AI), publishing refereed research articles, survey articles, and technical notes. Established in 1993 as one of the first electronic scientific journals, JAIR is indexed by INSPEC, Science Citation Index, and MathSciNet. JAIR reviews papers within approximately three months of submission and publishes accepted articles on the internet immediately upon receiving the final versions. JAIR articles are published for free distribution on the internet by the AI Access Foundation, and for purchase in bound volumes by AAAI Press.