配分函数形式博弈中Shapley值计算的复杂性

IF 4.5 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Oskar Skibski
{"title":"配分函数形式博弈中Shapley值计算的复杂性","authors":"Oskar Skibski","doi":"10.1613/jair.1.14648","DOIUrl":null,"url":null,"abstract":"We study the complexity of computing the Shapley value in partition function form games. We focus on two representations based on marginal contribution nets (embedded MC-nets and weighted MC-nets) and five extensions of the Shapley value. Our results show that while weighted MC-nets are more concise than embedded MC-nets, they have slightly worse computational properties when it comes to computing the Shapley value: two out of five extensions can be computed in polynomial time for embedded MC-nets and only one for weighted MC-nets.","PeriodicalId":54877,"journal":{"name":"Journal of Artificial Intelligence Research","volume":null,"pages":null},"PeriodicalIF":4.5000,"publicationDate":"2023-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Complexity of Computing the Shapley Value in Partition Function Form Games\",\"authors\":\"Oskar Skibski\",\"doi\":\"10.1613/jair.1.14648\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the complexity of computing the Shapley value in partition function form games. We focus on two representations based on marginal contribution nets (embedded MC-nets and weighted MC-nets) and five extensions of the Shapley value. Our results show that while weighted MC-nets are more concise than embedded MC-nets, they have slightly worse computational properties when it comes to computing the Shapley value: two out of five extensions can be computed in polynomial time for embedded MC-nets and only one for weighted MC-nets.\",\"PeriodicalId\":54877,\"journal\":{\"name\":\"Journal of Artificial Intelligence Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2023-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Artificial Intelligence Research\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1613/jair.1.14648\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Artificial Intelligence Research","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1613/jair.1.14648","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

研究了配分函数形式博弈中Shapley值的计算复杂性。我们重点讨论了基于边际贡献网的两种表示(嵌入式MC-nets和加权MC-nets)和Shapley值的五种扩展。我们的研究结果表明,虽然加权MC-nets比嵌入式MC-nets更简洁,但在计算Shapley值时,它们的计算性能略差:嵌入式MC-nets可以在多项式时间内计算5个扩展中的2个,而加权MC-nets只能在多项式时间内计算1个。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Complexity of Computing the Shapley Value in Partition Function Form Games
We study the complexity of computing the Shapley value in partition function form games. We focus on two representations based on marginal contribution nets (embedded MC-nets and weighted MC-nets) and five extensions of the Shapley value. Our results show that while weighted MC-nets are more concise than embedded MC-nets, they have slightly worse computational properties when it comes to computing the Shapley value: two out of five extensions can be computed in polynomial time for embedded MC-nets and only one for weighted MC-nets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Artificial Intelligence Research
Journal of Artificial Intelligence Research 工程技术-计算机:人工智能
CiteScore
9.60
自引率
4.00%
发文量
98
审稿时长
4 months
期刊介绍: JAIR(ISSN 1076 - 9757) covers all areas of artificial intelligence (AI), publishing refereed research articles, survey articles, and technical notes. Established in 1993 as one of the first electronic scientific journals, JAIR is indexed by INSPEC, Science Citation Index, and MathSciNet. JAIR reviews papers within approximately three months of submission and publishes accepted articles on the internet immediately upon receiving the final versions. JAIR articles are published for free distribution on the internet by the AI Access Foundation, and for purchase in bound volumes by AAAI Press.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信