{"title":"Hi(m, m), Hi(1) (m, m)和偶环链的e -超算术优美标记","authors":"S. Anubala, V. Ramachandran","doi":"10.2478/ausi-2023-0007","DOIUrl":null,"url":null,"abstract":"Abstract E-super arithmetic graceful labelling of a graph G is a bijection f from the union of the vertex set and edge set to the set of positive integers (1, 2, 3, … |V(G) ∪ E(G)|) such that the edges have the labels from the set {1, 2, 3, …, |E(G)|} and the induced mapping f* given by f* (uv) = f(u) + f(v) − f(uv) for uv ∈ E(G) has the range {|V(G) ∪ E(G)| + 1, |V(G) ∪ E(G)| + 2, …, |V(G)| + 2|E(G)|} In this paper we prove that Hi(m, m) and Hi(1) (m, m) and chain of even cycles C4,n, C6,n are E-super arithmetic graceful.","PeriodicalId":41480,"journal":{"name":"Acta Universitatis Sapientiae Informatica","volume":" 35","pages":"81 - 90"},"PeriodicalIF":0.3000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"E-super arithmetic graceful labelling of Hi(m, m), Hi(1) (m, m) and chain of even cycles\",\"authors\":\"S. Anubala, V. Ramachandran\",\"doi\":\"10.2478/ausi-2023-0007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract E-super arithmetic graceful labelling of a graph G is a bijection f from the union of the vertex set and edge set to the set of positive integers (1, 2, 3, … |V(G) ∪ E(G)|) such that the edges have the labels from the set {1, 2, 3, …, |E(G)|} and the induced mapping f* given by f* (uv) = f(u) + f(v) − f(uv) for uv ∈ E(G) has the range {|V(G) ∪ E(G)| + 1, |V(G) ∪ E(G)| + 2, …, |V(G)| + 2|E(G)|} In this paper we prove that Hi(m, m) and Hi(1) (m, m) and chain of even cycles C4,n, C6,n are E-super arithmetic graceful.\",\"PeriodicalId\":41480,\"journal\":{\"name\":\"Acta Universitatis Sapientiae Informatica\",\"volume\":\" 35\",\"pages\":\"81 - 90\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Universitatis Sapientiae Informatica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/ausi-2023-0007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Universitatis Sapientiae Informatica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/ausi-2023-0007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
摘要
文摘E-super算术优雅的标签图G是一个双射f将从欧盟的顶点集和边集的正整数集(1、2、3、…| V (G)∪E (G) |),边缘有标签从集合{1,2,3,…,| E (G) |}和诱导映射f *的* (uv) = f (u) + (V)−f为紫外线(uv)∈E (G)范围{| V (G)∪E (G) | + 1, | V (G)∪E (G) | + 2,…,V (G) | | + 2 | E (G) |}在本文中,我们证明嗨(m m)和嗨(1)(m m)甚至链周期C4, n,C6 n是e -超级算术优美的。
E-super arithmetic graceful labelling of Hi(m, m), Hi(1) (m, m) and chain of even cycles
Abstract E-super arithmetic graceful labelling of a graph G is a bijection f from the union of the vertex set and edge set to the set of positive integers (1, 2, 3, … |V(G) ∪ E(G)|) such that the edges have the labels from the set {1, 2, 3, …, |E(G)|} and the induced mapping f* given by f* (uv) = f(u) + f(v) − f(uv) for uv ∈ E(G) has the range {|V(G) ∪ E(G)| + 1, |V(G) ∪ E(G)| + 2, …, |V(G)| + 2|E(G)|} In this paper we prove that Hi(m, m) and Hi(1) (m, m) and chain of even cycles C4,n, C6,n are E-super arithmetic graceful.