Hi(m, m), Hi(1) (m, m)和偶环链的e -超算术优美标记

IF 0.3 Q4 COMPUTER SCIENCE, THEORY & METHODS
S. Anubala, V. Ramachandran
{"title":"Hi(m, m), Hi(1) (m, m)和偶环链的e -超算术优美标记","authors":"S. Anubala, V. Ramachandran","doi":"10.2478/ausi-2023-0007","DOIUrl":null,"url":null,"abstract":"Abstract E-super arithmetic graceful labelling of a graph G is a bijection f from the union of the vertex set and edge set to the set of positive integers (1, 2, 3, … |V(G) ∪ E(G)|) such that the edges have the labels from the set {1, 2, 3, …, |E(G)|} and the induced mapping f* given by f* (uv) = f(u) + f(v) − f(uv) for uv ∈ E(G) has the range {|V(G) ∪ E(G)| + 1, |V(G) ∪ E(G)| + 2, …, |V(G)| + 2|E(G)|} In this paper we prove that Hi(m, m) and Hi(1) (m, m) and chain of even cycles C4,n, C6,n are E-super arithmetic graceful.","PeriodicalId":41480,"journal":{"name":"Acta Universitatis Sapientiae Informatica","volume":" 35","pages":"81 - 90"},"PeriodicalIF":0.3000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"E-super arithmetic graceful labelling of Hi(m, m), Hi(1) (m, m) and chain of even cycles\",\"authors\":\"S. Anubala, V. Ramachandran\",\"doi\":\"10.2478/ausi-2023-0007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract E-super arithmetic graceful labelling of a graph G is a bijection f from the union of the vertex set and edge set to the set of positive integers (1, 2, 3, … |V(G) ∪ E(G)|) such that the edges have the labels from the set {1, 2, 3, …, |E(G)|} and the induced mapping f* given by f* (uv) = f(u) + f(v) − f(uv) for uv ∈ E(G) has the range {|V(G) ∪ E(G)| + 1, |V(G) ∪ E(G)| + 2, …, |V(G)| + 2|E(G)|} In this paper we prove that Hi(m, m) and Hi(1) (m, m) and chain of even cycles C4,n, C6,n are E-super arithmetic graceful.\",\"PeriodicalId\":41480,\"journal\":{\"name\":\"Acta Universitatis Sapientiae Informatica\",\"volume\":\" 35\",\"pages\":\"81 - 90\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Universitatis Sapientiae Informatica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/ausi-2023-0007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Universitatis Sapientiae Informatica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/ausi-2023-0007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

文摘E-super算术优雅的标签图G是一个双射f将从欧盟的顶点集和边集的正整数集(1、2、3、…| V (G)∪E (G) |),边缘有标签从集合{1,2,3,…,| E (G) |}和诱导映射f *的* (uv) = f (u) + (V)−f为紫外线(uv)∈E (G)范围{| V (G)∪E (G) | + 1, | V (G)∪E (G) | + 2,…,V (G) | | + 2 | E (G) |}在本文中,我们证明嗨(m m)和嗨(1)(m m)甚至链周期C4, n,C6 n是e -超级算术优美的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
E-super arithmetic graceful labelling of Hi(m, m), Hi(1) (m, m) and chain of even cycles
Abstract E-super arithmetic graceful labelling of a graph G is a bijection f from the union of the vertex set and edge set to the set of positive integers (1, 2, 3, … |V(G) ∪ E(G)|) such that the edges have the labels from the set {1, 2, 3, …, |E(G)|} and the induced mapping f* given by f* (uv) = f(u) + f(v) − f(uv) for uv ∈ E(G) has the range {|V(G) ∪ E(G)| + 1, |V(G) ∪ E(G)| + 2, …, |V(G)| + 2|E(G)|} In this paper we prove that Hi(m, m) and Hi(1) (m, m) and chain of even cycles C4,n, C6,n are E-super arithmetic graceful.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Universitatis Sapientiae Informatica
Acta Universitatis Sapientiae Informatica COMPUTER SCIENCE, THEORY & METHODS-
自引率
0.00%
发文量
9
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信