Nagel-Schenzel公式的初等证明

Q4 Mathematics
A. Vahidi
{"title":"Nagel-Schenzel公式的初等证明","authors":"A. Vahidi","doi":"10.29252/AS.2019.1359","DOIUrl":null,"url":null,"abstract":"Let R be a commutative Noetherian ring with non-zero identity, a an ideal of R, M a finitely generated R–module, and a1, . . . , an an a–filter regular M–sequence. The formula Ha(M) ∼=  H i (a1,...,an) (M) for all i < n, Hi−n a (H n (a1,...,an) (M)) for all i ≥ n, is known as Nagel-Schenzel formula and is a useful result to express the local cohomology modules in terms of filter regular sequences. In this paper, we provide an elementary proof to this formula.","PeriodicalId":36596,"journal":{"name":"Algebraic Structures and their Applications","volume":"94 18","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An elementary proof of Nagel-Schenzel formula\",\"authors\":\"A. Vahidi\",\"doi\":\"10.29252/AS.2019.1359\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let R be a commutative Noetherian ring with non-zero identity, a an ideal of R, M a finitely generated R–module, and a1, . . . , an an a–filter regular M–sequence. The formula Ha(M) ∼=  H i (a1,...,an) (M) for all i < n, Hi−n a (H n (a1,...,an) (M)) for all i ≥ n, is known as Nagel-Schenzel formula and is a useful result to express the local cohomology modules in terms of filter regular sequences. In this paper, we provide an elementary proof to this formula.\",\"PeriodicalId\":36596,\"journal\":{\"name\":\"Algebraic Structures and their Applications\",\"volume\":\"94 18\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebraic Structures and their Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29252/AS.2019.1359\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebraic Structures and their Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29252/AS.2019.1359","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

设R是一个非零单位元的交换诺瑟环,a是R的理想,M是一个有限生成的R模,a1,…,一个a -滤波器正则m序列。公式Ha(M) ~ =Hi (a1,…,an) (M)对于所有i < n, Hi - n a(H n (a1,…,an) (M))对于所有i≥n,被称为Nagel-Schenzel公式,它是用滤波正则序列表示局部上同模的一个有用的结果。本文给出了这个公式的初等证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An elementary proof of Nagel-Schenzel formula
Let R be a commutative Noetherian ring with non-zero identity, a an ideal of R, M a finitely generated R–module, and a1, . . . , an an a–filter regular M–sequence. The formula Ha(M) ∼=  H i (a1,...,an) (M) for all i < n, Hi−n a (H n (a1,...,an) (M)) for all i ≥ n, is known as Nagel-Schenzel formula and is a useful result to express the local cohomology modules in terms of filter regular sequences. In this paper, we provide an elementary proof to this formula.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Algebraic Structures and their Applications
Algebraic Structures and their Applications Mathematics-Algebra and Number Theory
CiteScore
0.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信