{"title":"由Horadam多项式定义的双一价函数族的系数界","authors":"A. Wanas, B. Frasin, S. R. Swamy, Y. Sailaja","doi":"10.12697/acutm.2022.26.02","DOIUrl":null,"url":null,"abstract":"In the present paper, we determine upper bounds for the first two Taylor–Maclaurin coefficients |a2| and |a3| for a certain family of holomorphic and bi-univalent functions defined by using the Horadam polynomials. Also, we solve Fekete–Szegö problem of functions belonging to this family. Further, we point out several special cases of our results.","PeriodicalId":42426,"journal":{"name":"Acta et Commentationes Universitatis Tartuensis de Mathematica","volume":"62 15","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2022-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Coefficients bounds for a family of bi-univalent functions defined by Horadam polynomials\",\"authors\":\"A. Wanas, B. Frasin, S. R. Swamy, Y. Sailaja\",\"doi\":\"10.12697/acutm.2022.26.02\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the present paper, we determine upper bounds for the first two Taylor–Maclaurin coefficients |a2| and |a3| for a certain family of holomorphic and bi-univalent functions defined by using the Horadam polynomials. Also, we solve Fekete–Szegö problem of functions belonging to this family. Further, we point out several special cases of our results.\",\"PeriodicalId\":42426,\"journal\":{\"name\":\"Acta et Commentationes Universitatis Tartuensis de Mathematica\",\"volume\":\"62 15\",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2022-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta et Commentationes Universitatis Tartuensis de Mathematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12697/acutm.2022.26.02\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta et Commentationes Universitatis Tartuensis de Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12697/acutm.2022.26.02","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
Coefficients bounds for a family of bi-univalent functions defined by Horadam polynomials
In the present paper, we determine upper bounds for the first two Taylor–Maclaurin coefficients |a2| and |a3| for a certain family of holomorphic and bi-univalent functions defined by using the Horadam polynomials. Also, we solve Fekete–Szegö problem of functions belonging to this family. Further, we point out several special cases of our results.