{"title":"识别流体介质中小障碍物的Kohn-Vogelius公式和高阶拓扑渐近公式","authors":"Montassar Barhoumi","doi":"10.2478/auom-2020-0003","DOIUrl":null,"url":null,"abstract":"Abstract This paper concerns the identification of a small obstacle immersed in a Stokes flow from boundary measurements. The proposed approach is based on the Kohn-Vogelius formulation and the topological sensitivity analysis method. We derive a high order asymptotic formula describing the variation of a Kohn-Vogelius type functional with respect to the insertion of a small obstacle inside the fluid flow domain. The obtained asymptotic formula will serve as very useful tools for developing accurate and robust numerical reconstruction algorithms.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Kohn-Vogelius formulation and high-order topological asymptotic formula for identifying small obstacles in a fluid medium\",\"authors\":\"Montassar Barhoumi\",\"doi\":\"10.2478/auom-2020-0003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This paper concerns the identification of a small obstacle immersed in a Stokes flow from boundary measurements. The proposed approach is based on the Kohn-Vogelius formulation and the topological sensitivity analysis method. We derive a high order asymptotic formula describing the variation of a Kohn-Vogelius type functional with respect to the insertion of a small obstacle inside the fluid flow domain. The obtained asymptotic formula will serve as very useful tools for developing accurate and robust numerical reconstruction algorithms.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2478/auom-2020-0003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2478/auom-2020-0003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Kohn-Vogelius formulation and high-order topological asymptotic formula for identifying small obstacles in a fluid medium
Abstract This paper concerns the identification of a small obstacle immersed in a Stokes flow from boundary measurements. The proposed approach is based on the Kohn-Vogelius formulation and the topological sensitivity analysis method. We derive a high order asymptotic formula describing the variation of a Kohn-Vogelius type functional with respect to the insertion of a small obstacle inside the fluid flow domain. The obtained asymptotic formula will serve as very useful tools for developing accurate and robust numerical reconstruction algorithms.