识别流体介质中小障碍物的Kohn-Vogelius公式和高阶拓扑渐近公式

Pub Date : 2020-03-01 DOI:10.2478/auom-2020-0003
Montassar Barhoumi
{"title":"识别流体介质中小障碍物的Kohn-Vogelius公式和高阶拓扑渐近公式","authors":"Montassar Barhoumi","doi":"10.2478/auom-2020-0003","DOIUrl":null,"url":null,"abstract":"Abstract This paper concerns the identification of a small obstacle immersed in a Stokes flow from boundary measurements. The proposed approach is based on the Kohn-Vogelius formulation and the topological sensitivity analysis method. We derive a high order asymptotic formula describing the variation of a Kohn-Vogelius type functional with respect to the insertion of a small obstacle inside the fluid flow domain. The obtained asymptotic formula will serve as very useful tools for developing accurate and robust numerical reconstruction algorithms.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Kohn-Vogelius formulation and high-order topological asymptotic formula for identifying small obstacles in a fluid medium\",\"authors\":\"Montassar Barhoumi\",\"doi\":\"10.2478/auom-2020-0003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This paper concerns the identification of a small obstacle immersed in a Stokes flow from boundary measurements. The proposed approach is based on the Kohn-Vogelius formulation and the topological sensitivity analysis method. We derive a high order asymptotic formula describing the variation of a Kohn-Vogelius type functional with respect to the insertion of a small obstacle inside the fluid flow domain. The obtained asymptotic formula will serve as very useful tools for developing accurate and robust numerical reconstruction algorithms.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2478/auom-2020-0003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2478/auom-2020-0003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要本文从边界测量的角度研究了Stokes流中小障碍物的识别问题。该方法基于Kohn-Vogelius公式和拓扑灵敏度分析方法。我们导出了一个高阶渐近公式,描述了Kohn-Vogelius型泛函在流体流动域内插入小障碍物时的变化。所得的渐近公式将为开发精确和鲁棒的数值重建算法提供非常有用的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Kohn-Vogelius formulation and high-order topological asymptotic formula for identifying small obstacles in a fluid medium
Abstract This paper concerns the identification of a small obstacle immersed in a Stokes flow from boundary measurements. The proposed approach is based on the Kohn-Vogelius formulation and the topological sensitivity analysis method. We derive a high order asymptotic formula describing the variation of a Kohn-Vogelius type functional with respect to the insertion of a small obstacle inside the fluid flow domain. The obtained asymptotic formula will serve as very useful tools for developing accurate and robust numerical reconstruction algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信