高强度高炉的效益与风险

Q3 Materials Science
S. Zagainov, S. Filatov, S. V. Myasoedov, L. Gileva, V. Titov
{"title":"高强度高炉的效益与风险","authors":"S. Zagainov, S. Filatov, S. V. Myasoedov, L. Gileva, V. Titov","doi":"10.17073/0368-0797-2018-10-760-765","DOIUrl":null,"url":null,"abstract":"Increase in the intensity of blast furnace smelting at NLMK JSC is achieved by improving quality of coke and iron ore materials, by increasing pressure under the blast furnace mouth and by oxygen enrichment. It is accompanied by an increase in the rate of wustite indirect reduction and decrease in specific heat losses with cooling water. However, the risks of burden yield problems are significantly lower with high intensity. It has been established that with the change in quality of charge materials, reason for burden yield problems can be also the variation in ore load ratio along the furnace radius. A new method for diagnosing causes of burden yield problems was developed. Using method of mathematical modeling, effect of change in ore load and size of iron-ore materials on peripheral gases temperature change and the degree of CO use were analyzed. The method is based on analysis of joint change in gas temperature and degree of CO use in peripheral area. Analysis of peripheral gases temperature variation and degree of CO use makes it possible to identify reasons of pressure drops along the furnace height. As a result of analysis of pressure drops dynamics changes along the furnace height, there have been found signs that can be used to judge the probability of burden yield problems. The possibility of reducing pressure drops due to redistribution of ore load along the furnace radius and the amount of gases is considered. It is shown that various methods of reducing the amount of gases are accompanied by different changes in coke consumption and furnace productivity. Mathematical model has been developed to select the best combination of parameters changing of the fuel-enriched blast in specific conditions.","PeriodicalId":35527,"journal":{"name":"Izvestiya Vysshikh Uchebnykh Zavedenij. Chernaya Metallurgiya","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Benefits and risks of blast furnaces with high intensity\",\"authors\":\"S. Zagainov, S. Filatov, S. V. Myasoedov, L. Gileva, V. Titov\",\"doi\":\"10.17073/0368-0797-2018-10-760-765\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Increase in the intensity of blast furnace smelting at NLMK JSC is achieved by improving quality of coke and iron ore materials, by increasing pressure under the blast furnace mouth and by oxygen enrichment. It is accompanied by an increase in the rate of wustite indirect reduction and decrease in specific heat losses with cooling water. However, the risks of burden yield problems are significantly lower with high intensity. It has been established that with the change in quality of charge materials, reason for burden yield problems can be also the variation in ore load ratio along the furnace radius. A new method for diagnosing causes of burden yield problems was developed. Using method of mathematical modeling, effect of change in ore load and size of iron-ore materials on peripheral gases temperature change and the degree of CO use were analyzed. The method is based on analysis of joint change in gas temperature and degree of CO use in peripheral area. Analysis of peripheral gases temperature variation and degree of CO use makes it possible to identify reasons of pressure drops along the furnace height. As a result of analysis of pressure drops dynamics changes along the furnace height, there have been found signs that can be used to judge the probability of burden yield problems. The possibility of reducing pressure drops due to redistribution of ore load along the furnace radius and the amount of gases is considered. It is shown that various methods of reducing the amount of gases are accompanied by different changes in coke consumption and furnace productivity. Mathematical model has been developed to select the best combination of parameters changing of the fuel-enriched blast in specific conditions.\",\"PeriodicalId\":35527,\"journal\":{\"name\":\"Izvestiya Vysshikh Uchebnykh Zavedenij. Chernaya Metallurgiya\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Izvestiya Vysshikh Uchebnykh Zavedenij. Chernaya Metallurgiya\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17073/0368-0797-2018-10-760-765\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Izvestiya Vysshikh Uchebnykh Zavedenij. Chernaya Metallurgiya","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17073/0368-0797-2018-10-760-765","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0

摘要

通过提高焦炭和铁矿石原料的质量,增加高炉口下压力和富氧,实现了NLMK JSC高炉冶炼强度的提高。它伴随着使用冷却水时浮氏体间接还原速率的增加和比热损失的减少。然而,在高强度下,负荷屈服问题的风险明显降低。随着炉料质量的变化,导致炉料屈服问题的原因也可能是沿炉膛半径的载矿比的变化。提出了一种诊断负荷产率问题原因的新方法。采用数学建模的方法,分析了矿石载荷和铁矿物料粒度变化对外围气体温度变化和CO利用程度的影响。该方法是基于对周边地区燃气温度变化和CO利用程度的联合分析。通过对周边气体温度变化和CO利用程度的分析,可以找出沿炉高方向压力下降的原因。通过对压降沿炉体高度的动态变化进行分析,发现了判断炉料屈服概率的标志。考虑了由于矿负荷沿炉膛半径和气体量的重新分配而降低压降的可能性。结果表明,不同的减气量方法会引起焦炭消耗量和炉效率的不同变化。建立了在特定条件下选择富燃料爆炸参数变化的最佳组合的数学模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Benefits and risks of blast furnaces with high intensity
Increase in the intensity of blast furnace smelting at NLMK JSC is achieved by improving quality of coke and iron ore materials, by increasing pressure under the blast furnace mouth and by oxygen enrichment. It is accompanied by an increase in the rate of wustite indirect reduction and decrease in specific heat losses with cooling water. However, the risks of burden yield problems are significantly lower with high intensity. It has been established that with the change in quality of charge materials, reason for burden yield problems can be also the variation in ore load ratio along the furnace radius. A new method for diagnosing causes of burden yield problems was developed. Using method of mathematical modeling, effect of change in ore load and size of iron-ore materials on peripheral gases temperature change and the degree of CO use were analyzed. The method is based on analysis of joint change in gas temperature and degree of CO use in peripheral area. Analysis of peripheral gases temperature variation and degree of CO use makes it possible to identify reasons of pressure drops along the furnace height. As a result of analysis of pressure drops dynamics changes along the furnace height, there have been found signs that can be used to judge the probability of burden yield problems. The possibility of reducing pressure drops due to redistribution of ore load along the furnace radius and the amount of gases is considered. It is shown that various methods of reducing the amount of gases are accompanied by different changes in coke consumption and furnace productivity. Mathematical model has been developed to select the best combination of parameters changing of the fuel-enriched blast in specific conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Izvestiya Vysshikh Uchebnykh Zavedenij. Chernaya Metallurgiya
Izvestiya Vysshikh Uchebnykh Zavedenij. Chernaya Metallurgiya Materials Science-Materials Science (miscellaneous)
CiteScore
0.90
自引率
0.00%
发文量
81
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信