辛地去除参数化射线

Pub Date : 2020-09-11 DOI:10.4310/jsg.2022.v20.n2.a4
B. Stratmann
{"title":"辛地去除参数化射线","authors":"B. Stratmann","doi":"10.4310/jsg.2022.v20.n2.a4","DOIUrl":null,"url":null,"abstract":"Extracting isolated rays from a symplectic manifold result in a manifold symplectomorphic to the initial one. The same holds for higher dimensional parametrized rays under an additional condition. More precisely, let $(M,\\omega)$ be a symplectic manifold. Let $[0,\\infty)\\times Q\\subset\\mathbb{R}\\times Q$ be considered as parametrized rays $[0,\\infty)$ and let $\\varphi:[-1,\\infty)\\times Q\\to M$ be an injective, proper, continuous map immersive on $(-1,\\infty)\\times Q$. If for the standard vector field $\\frac{\\partial}{\\partial t}$ on $\\mathbb{R}$ and any further vector field $\\nu$ tangent to $(-1,\\infty)\\times Q$ the equation $\\varphi^*\\omega(\\frac{\\partial}{\\partial t},\\nu)=0$ holds then $M$ and $M\\setminus \\varphi([0,\\infty)\\times Q)$ are symplectomorphic.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Removing parametrized rays symplectically\",\"authors\":\"B. Stratmann\",\"doi\":\"10.4310/jsg.2022.v20.n2.a4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Extracting isolated rays from a symplectic manifold result in a manifold symplectomorphic to the initial one. The same holds for higher dimensional parametrized rays under an additional condition. More precisely, let $(M,\\\\omega)$ be a symplectic manifold. Let $[0,\\\\infty)\\\\times Q\\\\subset\\\\mathbb{R}\\\\times Q$ be considered as parametrized rays $[0,\\\\infty)$ and let $\\\\varphi:[-1,\\\\infty)\\\\times Q\\\\to M$ be an injective, proper, continuous map immersive on $(-1,\\\\infty)\\\\times Q$. If for the standard vector field $\\\\frac{\\\\partial}{\\\\partial t}$ on $\\\\mathbb{R}$ and any further vector field $\\\\nu$ tangent to $(-1,\\\\infty)\\\\times Q$ the equation $\\\\varphi^*\\\\omega(\\\\frac{\\\\partial}{\\\\partial t},\\\\nu)=0$ holds then $M$ and $M\\\\setminus \\\\varphi([0,\\\\infty)\\\\times Q)$ are symplectomorphic.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/jsg.2022.v20.n2.a4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/jsg.2022.v20.n2.a4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

从辛流形中提取孤立射线,得到的流形与初始流形的辛同构。在附加条件下,这同样适用于高维参数化射线。更准确地说,假设$(M,\omega)$是一个辛流形。将$[0,\infty)\times Q\subset\mathbb{R}\times Q$视为参数化射线$[0,\infty)$,并将$\varphi:[-1,\infty)\times Q\to M$视为沉浸在$(-1,\infty)\times Q$上的一个注入的、适当的、连续的地图。如果对于$\mathbb{R}$上的标准向量场$\frac{\partial}{\partial t}$和任何与$(-1,\infty)\times Q$相切的更远的向量场$\nu$,方程$\varphi^*\omega(\frac{\partial}{\partial t},\nu)=0$成立,那么$M$和$M\setminus \varphi([0,\infty)\times Q)$是辛形态的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Removing parametrized rays symplectically
Extracting isolated rays from a symplectic manifold result in a manifold symplectomorphic to the initial one. The same holds for higher dimensional parametrized rays under an additional condition. More precisely, let $(M,\omega)$ be a symplectic manifold. Let $[0,\infty)\times Q\subset\mathbb{R}\times Q$ be considered as parametrized rays $[0,\infty)$ and let $\varphi:[-1,\infty)\times Q\to M$ be an injective, proper, continuous map immersive on $(-1,\infty)\times Q$. If for the standard vector field $\frac{\partial}{\partial t}$ on $\mathbb{R}$ and any further vector field $\nu$ tangent to $(-1,\infty)\times Q$ the equation $\varphi^*\omega(\frac{\partial}{\partial t},\nu)=0$ holds then $M$ and $M\setminus \varphi([0,\infty)\times Q)$ are symplectomorphic.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信