编织$K$框架的特征

Pub Date : 2019-07-20 DOI:10.3792/pjaa.96.008
A. Bhandari, Debajit Borah, S. Mukherjee
{"title":"编织$K$框架的特征","authors":"A. Bhandari, Debajit Borah, S. Mukherjee","doi":"10.3792/pjaa.96.008","DOIUrl":null,"url":null,"abstract":"In distributed signal processing frames play significant role as redundant building blocks. Bemrose et. al. were motivated from this concept, as a result they introduced weaving frames in Hilbert space. Weaving frames have useful applications in sensor networks, likewise weaving K-frames have been proved to be useful during signal reconstructions from the range of a bounded linear operator K. This article focuses on study, characterization of weaving K-frames in different spaces. Paley-Wiener type perturbation and conditions on erasure of frame components have been assembled to scrutinize woven-ness of K- frames.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Characterizations of weaving $K$-frames\",\"authors\":\"A. Bhandari, Debajit Borah, S. Mukherjee\",\"doi\":\"10.3792/pjaa.96.008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In distributed signal processing frames play significant role as redundant building blocks. Bemrose et. al. were motivated from this concept, as a result they introduced weaving frames in Hilbert space. Weaving frames have useful applications in sensor networks, likewise weaving K-frames have been proved to be useful during signal reconstructions from the range of a bounded linear operator K. This article focuses on study, characterization of weaving K-frames in different spaces. Paley-Wiener type perturbation and conditions on erasure of frame components have been assembled to scrutinize woven-ness of K- frames.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2019-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3792/pjaa.96.008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3792/pjaa.96.008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

在分布式信号处理中,帧作为冗余构件起着重要的作用。Bemrose等人的灵感来自于这个概念,因此他们在希尔伯特空间中引入了编织框架。编织帧在传感器网络中有很好的应用,同样,编织k帧也被证明在有界线性算子k的范围内重构信号时是有用的。本文重点研究了在不同空间中编织k帧的特征。佩利-维纳型摄动和擦除框架组件的条件已组装,以仔细检查K-框架的织造度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Characterizations of weaving $K$-frames
In distributed signal processing frames play significant role as redundant building blocks. Bemrose et. al. were motivated from this concept, as a result they introduced weaving frames in Hilbert space. Weaving frames have useful applications in sensor networks, likewise weaving K-frames have been proved to be useful during signal reconstructions from the range of a bounded linear operator K. This article focuses on study, characterization of weaving K-frames in different spaces. Paley-Wiener type perturbation and conditions on erasure of frame components have been assembled to scrutinize woven-ness of K- frames.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信