{"title":"单模随机图中标度指数之间的关系","authors":"James R. Lee","doi":"10.1007/s00039-023-00654-7","DOIUrl":null,"url":null,"abstract":"<p>We investigate the validity of the “Einstein relations” in the general setting of unimodular random networks. These are equalities relating scaling exponents: </p><span> $$\\begin{aligned} d_{w} &= d_{f} + \\tilde{\\zeta }, \\\\ d_{s} &= 2 d_{f}/d_{w}, \\end{aligned}$$ </span><p> where <i>d</i><sub><i>w</i></sub> is the walk dimension, <i>d</i><sub><i>f</i></sub> is the fractal dimension, <i>d</i><sub><i>s</i></sub> is the spectral dimension, and <span>\\(\\tilde{\\zeta }\\)</span> is the resistance exponent. Roughly speaking, this relates the mean displacement and return probability of a random walker to the density and conductivity of the underlying medium. We show that if <i>d</i><sub><i>f</i></sub> and <span>\\(\\tilde{\\zeta } \\geqslant 0\\)</span> exist, then <i>d</i><sub><i>w</i></sub> and <i>d</i><sub><i>s</i></sub> exist, and the aforementioned equalities hold. Moreover, our primary new estimate <span>\\(d_{w} \\geqslant d_{f} + \\tilde{\\zeta }\\)</span> is established for all <span>\\(\\tilde{\\zeta } \\in \\mathbb{R}\\)</span>.</p><p>For the uniform infinite planar triangulation (UIPT), this yields the consequence <i>d</i><sub><i>w</i></sub>=4 using <i>d</i><sub><i>f</i></sub>=4 (Angel in Geom. Funct. Anal. 13(5):935–974, 2003) and <span>\\(\\tilde{\\zeta }=0\\)</span> (established here as a consequence of the Liouville Quantum Gravity theory, following Gwynne-Miller 2020 and (Ding and Gwynne in Commun. Math. Phys. 374(3):1877–1934, 2020)). The conclusion <i>d</i><sub><i>w</i></sub>=4 had been previously established by Gwynne and Hutchcroft (2018) using more elaborate methods. A new consequence is that <i>d</i><sub><i>w</i></sub>=<i>d</i><sub><i>f</i></sub> for the uniform infinite Schnyder-wood decorated triangulation, implying that the simple random walk is subdiffusive, since <i>d</i><sub><i>f</i></sub>>2.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Relations between scaling exponents in unimodular random graphs\",\"authors\":\"James R. Lee\",\"doi\":\"10.1007/s00039-023-00654-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We investigate the validity of the “Einstein relations” in the general setting of unimodular random networks. These are equalities relating scaling exponents: </p><span> $$\\\\begin{aligned} d_{w} &= d_{f} + \\\\tilde{\\\\zeta }, \\\\\\\\ d_{s} &= 2 d_{f}/d_{w}, \\\\end{aligned}$$ </span><p> where <i>d</i><sub><i>w</i></sub> is the walk dimension, <i>d</i><sub><i>f</i></sub> is the fractal dimension, <i>d</i><sub><i>s</i></sub> is the spectral dimension, and <span>\\\\(\\\\tilde{\\\\zeta }\\\\)</span> is the resistance exponent. Roughly speaking, this relates the mean displacement and return probability of a random walker to the density and conductivity of the underlying medium. We show that if <i>d</i><sub><i>f</i></sub> and <span>\\\\(\\\\tilde{\\\\zeta } \\\\geqslant 0\\\\)</span> exist, then <i>d</i><sub><i>w</i></sub> and <i>d</i><sub><i>s</i></sub> exist, and the aforementioned equalities hold. Moreover, our primary new estimate <span>\\\\(d_{w} \\\\geqslant d_{f} + \\\\tilde{\\\\zeta }\\\\)</span> is established for all <span>\\\\(\\\\tilde{\\\\zeta } \\\\in \\\\mathbb{R}\\\\)</span>.</p><p>For the uniform infinite planar triangulation (UIPT), this yields the consequence <i>d</i><sub><i>w</i></sub>=4 using <i>d</i><sub><i>f</i></sub>=4 (Angel in Geom. Funct. Anal. 13(5):935–974, 2003) and <span>\\\\(\\\\tilde{\\\\zeta }=0\\\\)</span> (established here as a consequence of the Liouville Quantum Gravity theory, following Gwynne-Miller 2020 and (Ding and Gwynne in Commun. Math. Phys. 374(3):1877–1934, 2020)). The conclusion <i>d</i><sub><i>w</i></sub>=4 had been previously established by Gwynne and Hutchcroft (2018) using more elaborate methods. A new consequence is that <i>d</i><sub><i>w</i></sub>=<i>d</i><sub><i>f</i></sub> for the uniform infinite Schnyder-wood decorated triangulation, implying that the simple random walk is subdiffusive, since <i>d</i><sub><i>f</i></sub>>2.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00039-023-00654-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00039-023-00654-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 4
摘要
研究了“爱因斯坦关系”在非模随机网络一般情况下的有效性。这些是与缩放指数相关的等式:$$\begin{aligned} d_{w} &= d_{f} + \tilde{\zeta }, \\ d_{s} &= 2 d_{f}/d_{w}, \end{aligned}$$其中dw是行走维数,df是分形维数,ds是光谱维数,\(\tilde{\zeta }\)是阻力指数。粗略地说,这将随机行走器的平均位移和返回概率与底层介质的密度和电导率联系起来。我们证明,如果df和\(\tilde{\zeta } \geqslant 0\)存在,则dw和ds存在,并且上述等式成立。此外,我们的主要新估计\(d_{w} \geqslant d_{f} + \tilde{\zeta }\)建立了所有\(\tilde{\zeta } \in \mathbb{R}\) .对于均匀无限平面三角剖分(UIPT),这产生了结果dw=4使用df=4 (Angel in Geom)。函数。数学学报,13(5):935-974,2003)和\(\tilde{\zeta }=0\)(作为Liouville量子引力理论的结果,在Gwynne- miller 2020和(Ding and Gwynne in commons)之后建立。数学。物理学报,34(3):1877 - 184,2020)。Gwynne和Hutchcroft(2018)之前使用更复杂的方法建立了dw=4的结论。对于均匀无限Schnyder-wood装饰三角剖分,一个新的结论是dw=df,这意味着简单随机漫步是次扩散的,因为df&gt;2。
Relations between scaling exponents in unimodular random graphs
We investigate the validity of the “Einstein relations” in the general setting of unimodular random networks. These are equalities relating scaling exponents:
where dw is the walk dimension, df is the fractal dimension, ds is the spectral dimension, and \(\tilde{\zeta }\) is the resistance exponent. Roughly speaking, this relates the mean displacement and return probability of a random walker to the density and conductivity of the underlying medium. We show that if df and \(\tilde{\zeta } \geqslant 0\) exist, then dw and ds exist, and the aforementioned equalities hold. Moreover, our primary new estimate \(d_{w} \geqslant d_{f} + \tilde{\zeta }\) is established for all \(\tilde{\zeta } \in \mathbb{R}\).
For the uniform infinite planar triangulation (UIPT), this yields the consequence dw=4 using df=4 (Angel in Geom. Funct. Anal. 13(5):935–974, 2003) and \(\tilde{\zeta }=0\) (established here as a consequence of the Liouville Quantum Gravity theory, following Gwynne-Miller 2020 and (Ding and Gwynne in Commun. Math. Phys. 374(3):1877–1934, 2020)). The conclusion dw=4 had been previously established by Gwynne and Hutchcroft (2018) using more elaborate methods. A new consequence is that dw=df for the uniform infinite Schnyder-wood decorated triangulation, implying that the simple random walk is subdiffusive, since df>2.