库埃特流附近不稳定性研究的动力学方法

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Hui Li, Nader Masmoudi, Weiren Zhao
{"title":"库埃特流附近不稳定性研究的动力学方法","authors":"Hui Li,&nbsp;Nader Masmoudi,&nbsp;Weiren Zhao","doi":"10.1002/cpa.22183","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we obtain the optimal instability threshold of the Couette flow for Navier–Stokes equations with small viscosity <span></span><math>\n <semantics>\n <mrow>\n <mi>ν</mi>\n <mo>&gt;</mo>\n <mn>0</mn>\n </mrow>\n <annotation>$\\nu &amp;gt;0$</annotation>\n </semantics></math>, when the perturbations are in the critical spaces <span></span><math>\n <semantics>\n <mrow>\n <msubsup>\n <mi>H</mi>\n <mi>x</mi>\n <mn>1</mn>\n </msubsup>\n <msubsup>\n <mi>L</mi>\n <mi>y</mi>\n <mn>2</mn>\n </msubsup>\n </mrow>\n <annotation>$H^1_xL_y^2$</annotation>\n </semantics></math>. More precisely, we introduce a new dynamical approach to prove the instability for some perturbation of size <span></span><math>\n <semantics>\n <msup>\n <mi>ν</mi>\n <mrow>\n <mfrac>\n <mn>1</mn>\n <mn>2</mn>\n </mfrac>\n <mo>−</mo>\n <msub>\n <mi>δ</mi>\n <mn>0</mn>\n </msub>\n </mrow>\n </msup>\n <annotation>$\\nu ^{\\frac{1}{2}-\\delta _0}$</annotation>\n </semantics></math> with any small <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>δ</mi>\n <mn>0</mn>\n </msub>\n <mo>&gt;</mo>\n <mn>0</mn>\n </mrow>\n <annotation>$\\delta _0&amp;gt;0$</annotation>\n </semantics></math>, which implies that <span></span><math>\n <semantics>\n <msup>\n <mi>ν</mi>\n <mfrac>\n <mn>1</mn>\n <mn>2</mn>\n </mfrac>\n </msup>\n <annotation>$\\nu ^{\\frac{1}{2}}$</annotation>\n </semantics></math> is the sharp stability threshold. In our method, we prove a transient exponential growth without referring to eigenvalue or pseudo-spectrum. As an application, for the linearized Euler equations around shear flows that are near the Couette flow, we provide a new tool to prove the existence of growing modes for the corresponding Rayleigh operator and give a precise location of the eigenvalues.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A dynamical approach to the study of instability near Couette flow\",\"authors\":\"Hui Li,&nbsp;Nader Masmoudi,&nbsp;Weiren Zhao\",\"doi\":\"10.1002/cpa.22183\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we obtain the optimal instability threshold of the Couette flow for Navier–Stokes equations with small viscosity <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>ν</mi>\\n <mo>&gt;</mo>\\n <mn>0</mn>\\n </mrow>\\n <annotation>$\\\\nu &amp;gt;0$</annotation>\\n </semantics></math>, when the perturbations are in the critical spaces <span></span><math>\\n <semantics>\\n <mrow>\\n <msubsup>\\n <mi>H</mi>\\n <mi>x</mi>\\n <mn>1</mn>\\n </msubsup>\\n <msubsup>\\n <mi>L</mi>\\n <mi>y</mi>\\n <mn>2</mn>\\n </msubsup>\\n </mrow>\\n <annotation>$H^1_xL_y^2$</annotation>\\n </semantics></math>. More precisely, we introduce a new dynamical approach to prove the instability for some perturbation of size <span></span><math>\\n <semantics>\\n <msup>\\n <mi>ν</mi>\\n <mrow>\\n <mfrac>\\n <mn>1</mn>\\n <mn>2</mn>\\n </mfrac>\\n <mo>−</mo>\\n <msub>\\n <mi>δ</mi>\\n <mn>0</mn>\\n </msub>\\n </mrow>\\n </msup>\\n <annotation>$\\\\nu ^{\\\\frac{1}{2}-\\\\delta _0}$</annotation>\\n </semantics></math> with any small <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>δ</mi>\\n <mn>0</mn>\\n </msub>\\n <mo>&gt;</mo>\\n <mn>0</mn>\\n </mrow>\\n <annotation>$\\\\delta _0&amp;gt;0$</annotation>\\n </semantics></math>, which implies that <span></span><math>\\n <semantics>\\n <msup>\\n <mi>ν</mi>\\n <mfrac>\\n <mn>1</mn>\\n <mn>2</mn>\\n </mfrac>\\n </msup>\\n <annotation>$\\\\nu ^{\\\\frac{1}{2}}$</annotation>\\n </semantics></math> is the sharp stability threshold. In our method, we prove a transient exponential growth without referring to eigenvalue or pseudo-spectrum. As an application, for the linearized Euler equations around shear flows that are near the Couette flow, we provide a new tool to prove the existence of growing modes for the corresponding Rayleigh operator and give a precise location of the eigenvalues.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2023-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cpa.22183\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpa.22183","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本文得到了小黏度Navier-Stokes方程ν&gt;0 $\nu >0$在扰动处于临界空间Hx1Ly2 $H^1_xL_y^2$时,Couette流的最优不稳定阈值。更准确地说,我们引入了一种新的动力学方法来证明大小为ν12−δ0 $\nu ^{\frac{1}{2}-\delta _0}$的扰动与任何小的δ0&gt;0 $\delta _0>0$的不稳定性,这意味着ν12 $\nu ^{\frac{1}{2}}$是尖锐的稳定阈值。在我们的方法中,我们证明了一个暂态指数增长,而不涉及特征值或伪谱。作为应用,对于靠近Couette流的剪切流的线性化欧拉方程,我们提供了一种新的工具来证明相应的Rayleigh算子的增长模态的存在性,并给出了特征值的精确位置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A dynamical approach to the study of instability near Couette flow

In this paper, we obtain the optimal instability threshold of the Couette flow for Navier–Stokes equations with small viscosity ν > 0 $\nu &gt;0$ , when the perturbations are in the critical spaces H x 1 L y 2 $H^1_xL_y^2$ . More precisely, we introduce a new dynamical approach to prove the instability for some perturbation of size ν 1 2 δ 0 $\nu ^{\frac{1}{2}-\delta _0}$ with any small δ 0 > 0 $\delta _0&gt;0$ , which implies that ν 1 2 $\nu ^{\frac{1}{2}}$ is the sharp stability threshold. In our method, we prove a transient exponential growth without referring to eigenvalue or pseudo-spectrum. As an application, for the linearized Euler equations around shear flows that are near the Couette flow, we provide a new tool to prove the existence of growing modes for the corresponding Rayleigh operator and give a precise location of the eigenvalues.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信