{"title":"库埃特流附近不稳定性研究的动力学方法","authors":"Hui Li, Nader Masmoudi, Weiren Zhao","doi":"10.1002/cpa.22183","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we obtain the optimal instability threshold of the Couette flow for Navier–Stokes equations with small viscosity <span></span><math>\n <semantics>\n <mrow>\n <mi>ν</mi>\n <mo>></mo>\n <mn>0</mn>\n </mrow>\n <annotation>$\\nu &gt;0$</annotation>\n </semantics></math>, when the perturbations are in the critical spaces <span></span><math>\n <semantics>\n <mrow>\n <msubsup>\n <mi>H</mi>\n <mi>x</mi>\n <mn>1</mn>\n </msubsup>\n <msubsup>\n <mi>L</mi>\n <mi>y</mi>\n <mn>2</mn>\n </msubsup>\n </mrow>\n <annotation>$H^1_xL_y^2$</annotation>\n </semantics></math>. More precisely, we introduce a new dynamical approach to prove the instability for some perturbation of size <span></span><math>\n <semantics>\n <msup>\n <mi>ν</mi>\n <mrow>\n <mfrac>\n <mn>1</mn>\n <mn>2</mn>\n </mfrac>\n <mo>−</mo>\n <msub>\n <mi>δ</mi>\n <mn>0</mn>\n </msub>\n </mrow>\n </msup>\n <annotation>$\\nu ^{\\frac{1}{2}-\\delta _0}$</annotation>\n </semantics></math> with any small <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>δ</mi>\n <mn>0</mn>\n </msub>\n <mo>></mo>\n <mn>0</mn>\n </mrow>\n <annotation>$\\delta _0&gt;0$</annotation>\n </semantics></math>, which implies that <span></span><math>\n <semantics>\n <msup>\n <mi>ν</mi>\n <mfrac>\n <mn>1</mn>\n <mn>2</mn>\n </mfrac>\n </msup>\n <annotation>$\\nu ^{\\frac{1}{2}}$</annotation>\n </semantics></math> is the sharp stability threshold. In our method, we prove a transient exponential growth without referring to eigenvalue or pseudo-spectrum. As an application, for the linearized Euler equations around shear flows that are near the Couette flow, we provide a new tool to prove the existence of growing modes for the corresponding Rayleigh operator and give a precise location of the eigenvalues.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A dynamical approach to the study of instability near Couette flow\",\"authors\":\"Hui Li, Nader Masmoudi, Weiren Zhao\",\"doi\":\"10.1002/cpa.22183\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we obtain the optimal instability threshold of the Couette flow for Navier–Stokes equations with small viscosity <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>ν</mi>\\n <mo>></mo>\\n <mn>0</mn>\\n </mrow>\\n <annotation>$\\\\nu &gt;0$</annotation>\\n </semantics></math>, when the perturbations are in the critical spaces <span></span><math>\\n <semantics>\\n <mrow>\\n <msubsup>\\n <mi>H</mi>\\n <mi>x</mi>\\n <mn>1</mn>\\n </msubsup>\\n <msubsup>\\n <mi>L</mi>\\n <mi>y</mi>\\n <mn>2</mn>\\n </msubsup>\\n </mrow>\\n <annotation>$H^1_xL_y^2$</annotation>\\n </semantics></math>. More precisely, we introduce a new dynamical approach to prove the instability for some perturbation of size <span></span><math>\\n <semantics>\\n <msup>\\n <mi>ν</mi>\\n <mrow>\\n <mfrac>\\n <mn>1</mn>\\n <mn>2</mn>\\n </mfrac>\\n <mo>−</mo>\\n <msub>\\n <mi>δ</mi>\\n <mn>0</mn>\\n </msub>\\n </mrow>\\n </msup>\\n <annotation>$\\\\nu ^{\\\\frac{1}{2}-\\\\delta _0}$</annotation>\\n </semantics></math> with any small <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>δ</mi>\\n <mn>0</mn>\\n </msub>\\n <mo>></mo>\\n <mn>0</mn>\\n </mrow>\\n <annotation>$\\\\delta _0&gt;0$</annotation>\\n </semantics></math>, which implies that <span></span><math>\\n <semantics>\\n <msup>\\n <mi>ν</mi>\\n <mfrac>\\n <mn>1</mn>\\n <mn>2</mn>\\n </mfrac>\\n </msup>\\n <annotation>$\\\\nu ^{\\\\frac{1}{2}}$</annotation>\\n </semantics></math> is the sharp stability threshold. In our method, we prove a transient exponential growth without referring to eigenvalue or pseudo-spectrum. As an application, for the linearized Euler equations around shear flows that are near the Couette flow, we provide a new tool to prove the existence of growing modes for the corresponding Rayleigh operator and give a precise location of the eigenvalues.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2023-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cpa.22183\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpa.22183","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
A dynamical approach to the study of instability near Couette flow
In this paper, we obtain the optimal instability threshold of the Couette flow for Navier–Stokes equations with small viscosity , when the perturbations are in the critical spaces . More precisely, we introduce a new dynamical approach to prove the instability for some perturbation of size with any small , which implies that is the sharp stability threshold. In our method, we prove a transient exponential growth without referring to eigenvalue or pseudo-spectrum. As an application, for the linearized Euler equations around shear flows that are near the Couette flow, we provide a new tool to prove the existence of growing modes for the corresponding Rayleigh operator and give a precise location of the eigenvalues.