发散型算子的特征值函数最优集的正则性

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Baptiste Trey
{"title":"发散型算子的特征值函数最优集的正则性","authors":"Baptiste Trey","doi":"10.1016/j.anihpc.2020.11.002","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper we consider minimizers of the functional<span><span><span><math><mi>min</mi><mo>⁡</mo><mo>{</mo><msub><mrow><mi>λ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>Ω</mi><mo>)</mo><mo>+</mo><mo>⋯</mo><mo>+</mo><msub><mrow><mi>λ</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>Ω</mi><mo>)</mo><mo>+</mo><mi>Λ</mi><mo>|</mo><mi>Ω</mi><mo>|</mo><mo>,</mo><mspace></mspace><mo>:</mo><mspace></mspace><mi>Ω</mi><mo>⊂</mo><mi>D</mi><mtext> open</mtext><mo>}</mo></math></span></span></span> where <span><math><mi>D</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span> is a bounded open set and where <span><math><mn>0</mn><mo>&lt;</mo><msub><mrow><mi>λ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>Ω</mi><mo>)</mo><mo>≤</mo><mo>⋯</mo><mo>≤</mo><msub><mrow><mi>λ</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>Ω</mi><mo>)</mo></math></span> are the first <em>k</em><span><span> eigenvalues on Ω of an operator in divergence form with </span>Dirichlet boundary condition and with Hölder continuous coefficients. We prove that the optimal sets </span><span><math><msup><mrow><mi>Ω</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span> have finite perimeter and that their free boundary <span><math><mo>∂</mo><msup><mrow><mi>Ω</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>∩</mo><mi>D</mi></math></span> is composed of a <em>regular part</em>, which is locally the graph of a <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>α</mi></mrow></msup></math></span>-regular function, and a <span><em>singular part</em></span>, which is empty if <span><math><mi>d</mi><mo>&lt;</mo><msup><mrow><mi>d</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>, discrete if <span><math><mi>d</mi><mo>=</mo><msup><mrow><mi>d</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span><span> and of Hausdorff dimension at most </span><span><math><mi>d</mi><mo>−</mo><msup><mrow><mi>d</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span> if <span><math><mi>d</mi><mo>&gt;</mo><msup><mrow><mi>d</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>, for some <span><math><msup><mrow><mi>d</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>∈</mo><mo>{</mo><mn>5</mn><mo>,</mo><mn>6</mn><mo>,</mo><mn>7</mn><mo>}</mo></math></span>.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.anihpc.2020.11.002","citationCount":"6","resultStr":"{\"title\":\"Regularity of optimal sets for some functional involving eigenvalues of an operator in divergence form\",\"authors\":\"Baptiste Trey\",\"doi\":\"10.1016/j.anihpc.2020.11.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper we consider minimizers of the functional<span><span><span><math><mi>min</mi><mo>⁡</mo><mo>{</mo><msub><mrow><mi>λ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>Ω</mi><mo>)</mo><mo>+</mo><mo>⋯</mo><mo>+</mo><msub><mrow><mi>λ</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>Ω</mi><mo>)</mo><mo>+</mo><mi>Λ</mi><mo>|</mo><mi>Ω</mi><mo>|</mo><mo>,</mo><mspace></mspace><mo>:</mo><mspace></mspace><mi>Ω</mi><mo>⊂</mo><mi>D</mi><mtext> open</mtext><mo>}</mo></math></span></span></span> where <span><math><mi>D</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span> is a bounded open set and where <span><math><mn>0</mn><mo>&lt;</mo><msub><mrow><mi>λ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>Ω</mi><mo>)</mo><mo>≤</mo><mo>⋯</mo><mo>≤</mo><msub><mrow><mi>λ</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>Ω</mi><mo>)</mo></math></span> are the first <em>k</em><span><span> eigenvalues on Ω of an operator in divergence form with </span>Dirichlet boundary condition and with Hölder continuous coefficients. We prove that the optimal sets </span><span><math><msup><mrow><mi>Ω</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span> have finite perimeter and that their free boundary <span><math><mo>∂</mo><msup><mrow><mi>Ω</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>∩</mo><mi>D</mi></math></span> is composed of a <em>regular part</em>, which is locally the graph of a <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>α</mi></mrow></msup></math></span>-regular function, and a <span><em>singular part</em></span>, which is empty if <span><math><mi>d</mi><mo>&lt;</mo><msup><mrow><mi>d</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>, discrete if <span><math><mi>d</mi><mo>=</mo><msup><mrow><mi>d</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span><span> and of Hausdorff dimension at most </span><span><math><mi>d</mi><mo>−</mo><msup><mrow><mi>d</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span> if <span><math><mi>d</mi><mo>&gt;</mo><msup><mrow><mi>d</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>, for some <span><math><msup><mrow><mi>d</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>∈</mo><mo>{</mo><mn>5</mn><mo>,</mo><mn>6</mn><mo>,</mo><mn>7</mn><mo>}</mo></math></span>.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2021-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.anihpc.2020.11.002\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S029414492030113X\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S029414492030113X","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 6

摘要

在本文中,我们考虑泛函的极小子⁡{λ1(Ω)+Γ+λk(Ω)+∧|Ω|,:Ω⊂D开},其中D \8834Rd是有界开集,其中0<;λ1(Ω)≤…≤λk(Ω)是具有Dirichlet边界条件和Hölder连续系数的散度形式算子在Ω上的前k个特征值。我们证明了最优集Ω具有有限的周长,并且它们的自由边界ŞΩõD由正则部分和奇异部分组成,正则部分是C1,α-正则函数的局部图,奇异部分是空的,如果D<;d,如果d=d,则离散,并且如果d>;对于某些d∈{5,6,7}。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Regularity of optimal sets for some functional involving eigenvalues of an operator in divergence form

In this paper we consider minimizers of the functionalmin{λ1(Ω)++λk(Ω)+Λ|Ω|,:ΩD open} where DRd is a bounded open set and where 0<λ1(Ω)λk(Ω) are the first k eigenvalues on Ω of an operator in divergence form with Dirichlet boundary condition and with Hölder continuous coefficients. We prove that the optimal sets Ω have finite perimeter and that their free boundary ΩD is composed of a regular part, which is locally the graph of a C1,α-regular function, and a singular part, which is empty if d<d, discrete if d=d and of Hausdorff dimension at most dd if d>d, for some d{5,6,7}.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信