变形过程中熔体偏析和迁移的模拟模型

J. Barraud, V. Gardien, P. Allemand, P. Grandjean
{"title":"变形过程中熔体偏析和迁移的模拟模型","authors":"J. Barraud,&nbsp;V. Gardien,&nbsp;P. Allemand,&nbsp;P. Grandjean","doi":"10.1016/S1464-1895(01)00061-8","DOIUrl":null,"url":null,"abstract":"<div><p>Analog experiments of melt segregation and migration in lower crustal rocks have been conducted using paraffin wax. The wax has a mechanical planar anisotropy which reproduces the pervasive foliation of high-grade metamorphic rocks. The shortening of a layer of partially molten wax (melt fraction between 15 and 20%) results in the movement of a part of the liquid from the microscopic porosity of the wax to the outside of the layer in large accumulation sites. Four stages can be identified: (1) from the beginning of the shortening, melt segregates into dilatant foliation-parallel veins; (2) the development of a fold occurs with an increasing accumulation of liquid in the limbs; (3) strain localization and vein connection allows the nucleation of shear bands; (4) melt migration is channelled by the shear band toward external pockets. The first two stages involve melt percolation from kinematically controlled high-stress areas around growing veins. The third stage is associated with local attainment of a segregated melt critical concentration estimated at 14–15%. The last point involves both horizontal and upward migration of the melt. Melt segregation and migration are highly scale- and strain-dependent mechanisms.</p></div>","PeriodicalId":101024,"journal":{"name":"Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy","volume":"26 4","pages":"Pages 317-323"},"PeriodicalIF":0.0000,"publicationDate":"2001-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1464-1895(01)00061-8","citationCount":"33","resultStr":"{\"title\":\"Analog modelling of melt segregation and migration during deformation\",\"authors\":\"J. Barraud,&nbsp;V. Gardien,&nbsp;P. Allemand,&nbsp;P. Grandjean\",\"doi\":\"10.1016/S1464-1895(01)00061-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Analog experiments of melt segregation and migration in lower crustal rocks have been conducted using paraffin wax. The wax has a mechanical planar anisotropy which reproduces the pervasive foliation of high-grade metamorphic rocks. The shortening of a layer of partially molten wax (melt fraction between 15 and 20%) results in the movement of a part of the liquid from the microscopic porosity of the wax to the outside of the layer in large accumulation sites. Four stages can be identified: (1) from the beginning of the shortening, melt segregates into dilatant foliation-parallel veins; (2) the development of a fold occurs with an increasing accumulation of liquid in the limbs; (3) strain localization and vein connection allows the nucleation of shear bands; (4) melt migration is channelled by the shear band toward external pockets. The first two stages involve melt percolation from kinematically controlled high-stress areas around growing veins. The third stage is associated with local attainment of a segregated melt critical concentration estimated at 14–15%. The last point involves both horizontal and upward migration of the melt. Melt segregation and migration are highly scale- and strain-dependent mechanisms.</p></div>\",\"PeriodicalId\":101024,\"journal\":{\"name\":\"Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy\",\"volume\":\"26 4\",\"pages\":\"Pages 317-323\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S1464-1895(01)00061-8\",\"citationCount\":\"33\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1464189501000618\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1464189501000618","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 33

摘要

利用石蜡进行了下地壳岩石熔体偏析和迁移的模拟实验。蜡具有机械平面各向异性,再现了高级变质岩的普遍叶理。部分熔融的蜡层(熔体分数在15%和20%之间)的缩短导致液体的一部分从蜡的微观孔隙在大的积聚位置中移动到层的外部。可分为四个阶段:(1)从缩短开始,熔体偏析成剪胀叶理平行脉;(2) 褶皱的发展伴随着肢体中液体的积累增加而发生;(3) 应变局部化和静脉连接允许剪切带的成核;(4) 熔体的迁移是由剪切带引导向外部空穴的。前两个阶段涉及生长矿脉周围受运动学控制的高应力区域的熔体渗流。第三阶段与局部达到隔离熔体临界浓度有关,估计为14–15%。最后一点涉及熔体的水平和向上迁移。熔体偏析和迁移是高度依赖于规模和应变的机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analog modelling of melt segregation and migration during deformation

Analog experiments of melt segregation and migration in lower crustal rocks have been conducted using paraffin wax. The wax has a mechanical planar anisotropy which reproduces the pervasive foliation of high-grade metamorphic rocks. The shortening of a layer of partially molten wax (melt fraction between 15 and 20%) results in the movement of a part of the liquid from the microscopic porosity of the wax to the outside of the layer in large accumulation sites. Four stages can be identified: (1) from the beginning of the shortening, melt segregates into dilatant foliation-parallel veins; (2) the development of a fold occurs with an increasing accumulation of liquid in the limbs; (3) strain localization and vein connection allows the nucleation of shear bands; (4) melt migration is channelled by the shear band toward external pockets. The first two stages involve melt percolation from kinematically controlled high-stress areas around growing veins. The third stage is associated with local attainment of a segregated melt critical concentration estimated at 14–15%. The last point involves both horizontal and upward migration of the melt. Melt segregation and migration are highly scale- and strain-dependent mechanisms.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信