{"title":"广义Korteweg-de-Vries方程的非色散解通常是多孤子","authors":"Xavier Friederich","doi":"10.1016/j.anihpc.2020.11.010","DOIUrl":null,"url":null,"abstract":"<div><p>We consider solutions of the generalized Korteweg-de Vries equations (gKdV) which are non dispersive in some sense and which remain close to multi-solitons. We show that these solutions are necessarily pure multi-solitons. For the Korteweg-de Vries equation (KdV) and the modified Korteweg-de Vries equation (mKdV) in particular, we obtain a characterization of multi-solitons and multi-breathers in terms of non dispersion.</p></div>","PeriodicalId":55514,"journal":{"name":"Annales De L Institut Henri Poincare-Analyse Non Lineaire","volume":"38 5","pages":"Pages 1525-1552"},"PeriodicalIF":1.8000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.anihpc.2020.11.010","citationCount":"2","resultStr":"{\"title\":\"Non dispersive solutions of the generalized Korteweg-de Vries equations are typically multi-solitons\",\"authors\":\"Xavier Friederich\",\"doi\":\"10.1016/j.anihpc.2020.11.010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We consider solutions of the generalized Korteweg-de Vries equations (gKdV) which are non dispersive in some sense and which remain close to multi-solitons. We show that these solutions are necessarily pure multi-solitons. For the Korteweg-de Vries equation (KdV) and the modified Korteweg-de Vries equation (mKdV) in particular, we obtain a characterization of multi-solitons and multi-breathers in terms of non dispersion.</p></div>\",\"PeriodicalId\":55514,\"journal\":{\"name\":\"Annales De L Institut Henri Poincare-Analyse Non Lineaire\",\"volume\":\"38 5\",\"pages\":\"Pages 1525-1552\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2021-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.anihpc.2020.11.010\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales De L Institut Henri Poincare-Analyse Non Lineaire\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0294144920301256\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales De L Institut Henri Poincare-Analyse Non Lineaire","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0294144920301256","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 2
摘要
我们考虑广义Korteweg-de-Vries方程(gKdV)的解,该方程在某种意义上是非色散的,并且仍然接近于多孤子。我们证明了这些解必然是纯的多孤子。特别是对于Korteweg-de-Vries方程(KdV)和修正的Korteweg de Vries方程,我们获得了多孤子和多呼吸子的非色散特性。
Non dispersive solutions of the generalized Korteweg-de Vries equations are typically multi-solitons
We consider solutions of the generalized Korteweg-de Vries equations (gKdV) which are non dispersive in some sense and which remain close to multi-solitons. We show that these solutions are necessarily pure multi-solitons. For the Korteweg-de Vries equation (KdV) and the modified Korteweg-de Vries equation (mKdV) in particular, we obtain a characterization of multi-solitons and multi-breathers in terms of non dispersion.
期刊介绍:
The Nonlinear Analysis section of the Annales de l''Institut Henri Poincaré is an international journal created in 1983 which publishes original and high quality research articles. It concentrates on all domains concerned with nonlinear analysis, specially applicable to PDE, mechanics, physics, economy, without overlooking the numerical aspects.