一般Camassa-Holm模型中peakon反尖峰碰撞的渐近性

Q1 Mathematics
G. Omel'yanov
{"title":"一般Camassa-Holm模型中peakon反尖峰碰撞的渐近性","authors":"G. Omel'yanov","doi":"10.1016/j.csfx.2023.100101","DOIUrl":null,"url":null,"abstract":"<div><p>We analyze a peakon - antipeakon collision for essentially non-integrable versions of the Camassa-Holm equation. Using the matching and weak asymptotics methods, we construct an asymptotic solution that satisfies both a one-parameter family of equations (with a parameter <em>r</em>), and two energy laws. It is shown that the original waves with amplitudes <span><math><msub><mrow><mi>A</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>&gt;</mo><mn>0</mn></math></span> and <span><math><msub><mrow><mi>A</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>&lt;</mo><mn>0</mn></math></span> are reflected upon collision and form new waves with amplitudes <span><math><msub><mrow><mi>B</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>&lt;</mo><mn>0</mn></math></span> and <span><math><msub><mrow><mi>B</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>&gt;</mo><mn>0</mn></math></span> such that, depending on the parameter <em>r</em>, either <span><math><msub><mrow><mi>B</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>=</mo><msub><mrow><mi>A</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>B</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>=</mo><msub><mrow><mi>A</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>, or <span><math><msub><mrow><mi>B</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> are arbitrary numbers provided <span><math><msub><mrow><mi>B</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><msub><mrow><mi>B</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>=</mo><msub><mrow><mi>A</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><msub><mrow><mi>A</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>.</p></div>","PeriodicalId":37147,"journal":{"name":"Chaos, Solitons and Fractals: X","volume":"11 ","pages":"Article 100101"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590054423000118/pdfft?md5=346a9cc2d98638294b017dbfb0ae46bc&pid=1-s2.0-S2590054423000118-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Asymptotics for peakon-antipeakon collision in a general Camassa-Holm model\",\"authors\":\"G. Omel'yanov\",\"doi\":\"10.1016/j.csfx.2023.100101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We analyze a peakon - antipeakon collision for essentially non-integrable versions of the Camassa-Holm equation. Using the matching and weak asymptotics methods, we construct an asymptotic solution that satisfies both a one-parameter family of equations (with a parameter <em>r</em>), and two energy laws. It is shown that the original waves with amplitudes <span><math><msub><mrow><mi>A</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>&gt;</mo><mn>0</mn></math></span> and <span><math><msub><mrow><mi>A</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>&lt;</mo><mn>0</mn></math></span> are reflected upon collision and form new waves with amplitudes <span><math><msub><mrow><mi>B</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>&lt;</mo><mn>0</mn></math></span> and <span><math><msub><mrow><mi>B</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>&gt;</mo><mn>0</mn></math></span> such that, depending on the parameter <em>r</em>, either <span><math><msub><mrow><mi>B</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>=</mo><msub><mrow><mi>A</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>B</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>=</mo><msub><mrow><mi>A</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>, or <span><math><msub><mrow><mi>B</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> are arbitrary numbers provided <span><math><msub><mrow><mi>B</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><msub><mrow><mi>B</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>=</mo><msub><mrow><mi>A</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><msub><mrow><mi>A</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>.</p></div>\",\"PeriodicalId\":37147,\"journal\":{\"name\":\"Chaos, Solitons and Fractals: X\",\"volume\":\"11 \",\"pages\":\"Article 100101\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2590054423000118/pdfft?md5=346a9cc2d98638294b017dbfb0ae46bc&pid=1-s2.0-S2590054423000118-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos, Solitons and Fractals: X\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590054423000118\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos, Solitons and Fractals: X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590054423000118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

我们分析了本质上不可积的Camassa-Holm方程的一个峰-反峰碰撞。使用匹配和弱渐近方法,我们构造了一个满足单参数方程组(参数为r)和两个能量定律的渐近解。结果表明,振幅为A1>;0和A2<;0在碰撞时被反射并且形成具有振幅B1<;0和B2>;0,使得根据参数r,B1=A2和B2=A1,或者Bi是任意数字,前提是B1+B2=A1+A2。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Asymptotics for peakon-antipeakon collision in a general Camassa-Holm model

We analyze a peakon - antipeakon collision for essentially non-integrable versions of the Camassa-Holm equation. Using the matching and weak asymptotics methods, we construct an asymptotic solution that satisfies both a one-parameter family of equations (with a parameter r), and two energy laws. It is shown that the original waves with amplitudes A1>0 and A2<0 are reflected upon collision and form new waves with amplitudes B1<0 and B2>0 such that, depending on the parameter r, either B1=A2 and B2=A1, or Bi are arbitrary numbers provided B1+B2=A1+A2.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chaos, Solitons and Fractals: X
Chaos, Solitons and Fractals: X Mathematics-Mathematics (all)
CiteScore
5.00
自引率
0.00%
发文量
15
审稿时长
20 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信