壳牌-横河高级控制与评估平台(PACE)上分布式MPC大规模工业过程的自动分解

IF 3.9 2区 工程技术 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Wentao Tang , Pierre Carrette , Yongsong Cai , John M. Williamson , Prodromos Daoutidis
{"title":"壳牌-横河高级控制与评估平台(PACE)上分布式MPC大规模工业过程的自动分解","authors":"Wentao Tang ,&nbsp;Pierre Carrette ,&nbsp;Yongsong Cai ,&nbsp;John M. Williamson ,&nbsp;Prodromos Daoutidis","doi":"10.1016/j.compchemeng.2023.108382","DOIUrl":null,"url":null,"abstract":"<div><p><span>The kernel of industrial advanced process control (APC) lies in the formulation and solution of model predictive control<span> (MPC) problems, which specify the controller moves according to the solution of an optimal control problem at each sampling time. A significant challenge is the online computation for large-scale industrial systems. As the state-of-the-art APC technology, the Shell–Yokogawa Platform for Advanced Control and Estimation (PACE) has adopted a systematic framework of handling dynamic optimization of large-scale systems, where an automatic decomposition procedure generates subsystems for distributed MPC. The decomposition is implemented on network representations of the MPC models that capture interactions among process variables, with community detection used to maximize the statistical significance of the </span></span>subnetworks<span> with preferred internal interconnections. This paper introduces the fundamentals of such a decomposition approach and this functionality in PACE, followed by a case study on a crude distillation process to showcase its industrial application.</span></p></div>","PeriodicalId":286,"journal":{"name":"Computers & Chemical Engineering","volume":"178 ","pages":"Article 108382"},"PeriodicalIF":3.9000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Automatic decomposition of large-scale industrial processes for distributed MPC on the Shell–Yokogawa Platform for Advanced Control and Estimation (PACE)\",\"authors\":\"Wentao Tang ,&nbsp;Pierre Carrette ,&nbsp;Yongsong Cai ,&nbsp;John M. Williamson ,&nbsp;Prodromos Daoutidis\",\"doi\":\"10.1016/j.compchemeng.2023.108382\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>The kernel of industrial advanced process control (APC) lies in the formulation and solution of model predictive control<span> (MPC) problems, which specify the controller moves according to the solution of an optimal control problem at each sampling time. A significant challenge is the online computation for large-scale industrial systems. As the state-of-the-art APC technology, the Shell–Yokogawa Platform for Advanced Control and Estimation (PACE) has adopted a systematic framework of handling dynamic optimization of large-scale systems, where an automatic decomposition procedure generates subsystems for distributed MPC. The decomposition is implemented on network representations of the MPC models that capture interactions among process variables, with community detection used to maximize the statistical significance of the </span></span>subnetworks<span> with preferred internal interconnections. This paper introduces the fundamentals of such a decomposition approach and this functionality in PACE, followed by a case study on a crude distillation process to showcase its industrial application.</span></p></div>\",\"PeriodicalId\":286,\"journal\":{\"name\":\"Computers & Chemical Engineering\",\"volume\":\"178 \",\"pages\":\"Article 108382\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Chemical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0098135423002521\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098135423002521","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 3

摘要

工业先进过程控制(APC)的核心在于模型预测控制(MPC)问题的制定和求解,该问题规定控制器在每个采样时间根据最优控制问题的解移动。一个重大挑战是大规模工业系统的在线计算。作为最先进的APC技术,壳牌-横河高级控制和估计平台(PACE)采用了一个处理大型系统动态优化的系统框架,其中自动分解程序为分布式MPC生成子系统。分解是在MPC模型的网络表示上实现的,MPC模型捕捉过程变量之间的交互,社区检测用于最大化具有优选内部互连的子网络的统计显著性。本文介绍了这种分解方法的基本原理及其在PACE中的功能,然后对原油蒸馏过程进行了案例研究,以展示其工业应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic decomposition of large-scale industrial processes for distributed MPC on the Shell–Yokogawa Platform for Advanced Control and Estimation (PACE)

The kernel of industrial advanced process control (APC) lies in the formulation and solution of model predictive control (MPC) problems, which specify the controller moves according to the solution of an optimal control problem at each sampling time. A significant challenge is the online computation for large-scale industrial systems. As the state-of-the-art APC technology, the Shell–Yokogawa Platform for Advanced Control and Estimation (PACE) has adopted a systematic framework of handling dynamic optimization of large-scale systems, where an automatic decomposition procedure generates subsystems for distributed MPC. The decomposition is implemented on network representations of the MPC models that capture interactions among process variables, with community detection used to maximize the statistical significance of the subnetworks with preferred internal interconnections. This paper introduces the fundamentals of such a decomposition approach and this functionality in PACE, followed by a case study on a crude distillation process to showcase its industrial application.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Chemical Engineering
Computers & Chemical Engineering 工程技术-工程:化工
CiteScore
8.70
自引率
14.00%
发文量
374
审稿时长
70 days
期刊介绍: Computers & Chemical Engineering is primarily a journal of record for new developments in the application of computing and systems technology to chemical engineering problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信