基于神经分层的去偏推荐

Quanyu Dai , Zhenhua Dong , Xu Chen
{"title":"基于神经分层的去偏推荐","authors":"Quanyu Dai ,&nbsp;Zhenhua Dong ,&nbsp;Xu Chen","doi":"10.1016/j.aiopen.2022.11.005","DOIUrl":null,"url":null,"abstract":"<div><p>Debiased recommender models have recently attracted increasing attention from the academic and industry communities. Existing models are mostly based on the technique of inverse propensity score (IPS). However, in the recommendation domain, IPS can be hard to estimate given the sparse and noisy nature of the observed user–item exposure data. To alleviate this problem, in this paper, we assume that the user preference can be dominated by a small amount of latent factors, and propose to cluster the users for computing more accurate IPS via increasing the exposure densities. Basically, such method is similar with the spirit of stratification models in applied statistics. However, unlike previous heuristic stratification strategy, we learn the cluster criterion by presenting the users with low ranking embeddings, which are future shared with the user representations in the recommender model. At last, we find that our model has strong connections with the previous two types of debiased recommender models. We conduct extensive experiments based on real-world datasets to demonstrate the effectiveness of the proposed method.</p></div>","PeriodicalId":100068,"journal":{"name":"AI Open","volume":"3 ","pages":"Pages 213-217"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666651022000201/pdfft?md5=1244b2c9319c988375fcebe6f3172caa&pid=1-s2.0-S2666651022000201-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Debiased recommendation with neural stratification\",\"authors\":\"Quanyu Dai ,&nbsp;Zhenhua Dong ,&nbsp;Xu Chen\",\"doi\":\"10.1016/j.aiopen.2022.11.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Debiased recommender models have recently attracted increasing attention from the academic and industry communities. Existing models are mostly based on the technique of inverse propensity score (IPS). However, in the recommendation domain, IPS can be hard to estimate given the sparse and noisy nature of the observed user–item exposure data. To alleviate this problem, in this paper, we assume that the user preference can be dominated by a small amount of latent factors, and propose to cluster the users for computing more accurate IPS via increasing the exposure densities. Basically, such method is similar with the spirit of stratification models in applied statistics. However, unlike previous heuristic stratification strategy, we learn the cluster criterion by presenting the users with low ranking embeddings, which are future shared with the user representations in the recommender model. At last, we find that our model has strong connections with the previous two types of debiased recommender models. We conduct extensive experiments based on real-world datasets to demonstrate the effectiveness of the proposed method.</p></div>\",\"PeriodicalId\":100068,\"journal\":{\"name\":\"AI Open\",\"volume\":\"3 \",\"pages\":\"Pages 213-217\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666651022000201/pdfft?md5=1244b2c9319c988375fcebe6f3172caa&pid=1-s2.0-S2666651022000201-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AI Open\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666651022000201\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AI Open","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666651022000201","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

最近,去偏推荐模型越来越受到学术界和行业界的关注。现有的模型大多基于反倾向评分(IPS)技术。然而,在推荐领域,考虑到观察到的用户-项目暴露数据的稀疏性和噪声性,IPS可能很难估计。为了缓解这个问题,在本文中,我们假设用户偏好可以由少量潜在因素主导,并建议通过增加曝光密度来对用户进行聚类,以计算更准确的IPS。基本上,这种方法与应用统计学中分层模型的精神是相似的。然而,与以前的启发式分层策略不同,我们通过向用户呈现低排名嵌入来学习聚类标准,这些嵌入将来与推荐模型中的用户表示共享。最后,我们发现我们的模型与前两种类型的去偏推荐模型有很强的联系。我们基于真实世界的数据集进行了大量实验,以证明所提出方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Debiased recommendation with neural stratification

Debiased recommender models have recently attracted increasing attention from the academic and industry communities. Existing models are mostly based on the technique of inverse propensity score (IPS). However, in the recommendation domain, IPS can be hard to estimate given the sparse and noisy nature of the observed user–item exposure data. To alleviate this problem, in this paper, we assume that the user preference can be dominated by a small amount of latent factors, and propose to cluster the users for computing more accurate IPS via increasing the exposure densities. Basically, such method is similar with the spirit of stratification models in applied statistics. However, unlike previous heuristic stratification strategy, we learn the cluster criterion by presenting the users with low ranking embeddings, which are future shared with the user representations in the recommender model. At last, we find that our model has strong connections with the previous two types of debiased recommender models. We conduct extensive experiments based on real-world datasets to demonstrate the effectiveness of the proposed method.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
45.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信