对偶四元数生成有理曲面的特殊合成

J. William Hoffman , Haohao Wang
{"title":"对偶四元数生成有理曲面的特殊合成","authors":"J. William Hoffman ,&nbsp;Haohao Wang","doi":"10.1016/j.jaca.2023.100004","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we first generate a family of rational surfaces in affine 3-space from three rational space curves by dual quaternion multiplication utilizing dual quaternions as a tool to represent rigid transformations. We provide an algorithm to compute all the base points of the homogeneous tensor product parametrization of this family of surfaces. Our main focus is the syzygies of these surfaces. We discover two sets of special syzygies, and show that the syzygy module and a <em>μ</em>-basis of this surface can be extracted from either set of special syzygies. Finally, we describe the structure of a free resolution of the module generated by these special syzygies, and use this free resolution to classify the minimal free resolutions of this module.</p></div>","PeriodicalId":100767,"journal":{"name":"Journal of Computational Algebra","volume":"3 ","pages":"Article 100004"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772827723000013/pdfft?md5=8b698b6cf3ea7bba4364ded5ba484448&pid=1-s2.0-S2772827723000013-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Special syzygies of rational surfaces generated by dual quaternions\",\"authors\":\"J. William Hoffman ,&nbsp;Haohao Wang\",\"doi\":\"10.1016/j.jaca.2023.100004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we first generate a family of rational surfaces in affine 3-space from three rational space curves by dual quaternion multiplication utilizing dual quaternions as a tool to represent rigid transformations. We provide an algorithm to compute all the base points of the homogeneous tensor product parametrization of this family of surfaces. Our main focus is the syzygies of these surfaces. We discover two sets of special syzygies, and show that the syzygy module and a <em>μ</em>-basis of this surface can be extracted from either set of special syzygies. Finally, we describe the structure of a free resolution of the module generated by these special syzygies, and use this free resolution to classify the minimal free resolutions of this module.</p></div>\",\"PeriodicalId\":100767,\"journal\":{\"name\":\"Journal of Computational Algebra\",\"volume\":\"3 \",\"pages\":\"Article 100004\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2772827723000013/pdfft?md5=8b698b6cf3ea7bba4364ded5ba484448&pid=1-s2.0-S2772827723000013-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Algebra\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772827723000013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Algebra","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772827723000013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们首先利用对偶四元数作为表示刚性变换的工具,通过对偶四元数来由三条有理空间曲线在仿射三空间中生成一组有理曲面。我们提供了一种算法来计算这类曲面的齐次张量积参数化的所有基点。我们主要关注的是这些表面的合成。我们发现了两组特殊的synzygies,并证明了该曲面的synzygy模和μ基可以从任意一组特殊的Synzygies中提取。最后,我们描述了由这些特殊系统生成的模块的自由分辨率的结构,并使用该自由分辨率对该模块的最小自由分辨率进行分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Special syzygies of rational surfaces generated by dual quaternions

In this paper, we first generate a family of rational surfaces in affine 3-space from three rational space curves by dual quaternion multiplication utilizing dual quaternions as a tool to represent rigid transformations. We provide an algorithm to compute all the base points of the homogeneous tensor product parametrization of this family of surfaces. Our main focus is the syzygies of these surfaces. We discover two sets of special syzygies, and show that the syzygy module and a μ-basis of this surface can be extracted from either set of special syzygies. Finally, we describe the structure of a free resolution of the module generated by these special syzygies, and use this free resolution to classify the minimal free resolutions of this module.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信