渐近方法对W.T.Koiter非线性弱弯曲壳模型的论证

Khalid Elamri
{"title":"渐近方法对W.T.Koiter非线性弱弯曲壳模型的论证","authors":"Khalid Elamri","doi":"10.1016/S1251-8069(98)80195-4","DOIUrl":null,"url":null,"abstract":"<div><p>We present a justification of the nonlinear Koiter's shallow-shell model using an asymptotic approach. Our method needs no a priori assumptions. Putting equilibrium equations into a nondimensional form, dimensionless numbers naturally appear. These numbers characterize level forces and shell geometry. In the case of a shallow-shell subjected to moderate level forces, the nonlinear Koiter's shallow-shell model is obtained.</p></div>","PeriodicalId":100304,"journal":{"name":"Comptes Rendus de l'Académie des Sciences - Series IIB - Mechanics-Physics-Chemistry-Astronomy","volume":"326 5","pages":"Pages 293-296"},"PeriodicalIF":0.0000,"publicationDate":"1998-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1251-8069(98)80195-4","citationCount":"2","resultStr":"{\"title\":\"Justification du modèle non linéaire de coque faiblement courbée de W.t. Koiter par approche asymptotique\",\"authors\":\"Khalid Elamri\",\"doi\":\"10.1016/S1251-8069(98)80195-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We present a justification of the nonlinear Koiter's shallow-shell model using an asymptotic approach. Our method needs no a priori assumptions. Putting equilibrium equations into a nondimensional form, dimensionless numbers naturally appear. These numbers characterize level forces and shell geometry. In the case of a shallow-shell subjected to moderate level forces, the nonlinear Koiter's shallow-shell model is obtained.</p></div>\",\"PeriodicalId\":100304,\"journal\":{\"name\":\"Comptes Rendus de l'Académie des Sciences - Series IIB - Mechanics-Physics-Chemistry-Astronomy\",\"volume\":\"326 5\",\"pages\":\"Pages 293-296\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S1251-8069(98)80195-4\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comptes Rendus de l'Académie des Sciences - Series IIB - Mechanics-Physics-Chemistry-Astronomy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1251806998801954\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comptes Rendus de l'Académie des Sciences - Series IIB - Mechanics-Physics-Chemistry-Astronomy","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1251806998801954","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

我们用渐近方法证明了非线性Koiter扁壳模型的正确性。我们的方法不需要先验假设。将平衡方程置于无量纲形式中,自然会出现无量纲数。这些数字代表水平力和壳体几何形状。在浅壳受到中等水平力的情况下,得到了非线性Koiter浅壳模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Justification du modèle non linéaire de coque faiblement courbée de W.t. Koiter par approche asymptotique

We present a justification of the nonlinear Koiter's shallow-shell model using an asymptotic approach. Our method needs no a priori assumptions. Putting equilibrium equations into a nondimensional form, dimensionless numbers naturally appear. These numbers characterize level forces and shell geometry. In the case of a shallow-shell subjected to moderate level forces, the nonlinear Koiter's shallow-shell model is obtained.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信