{"title":"超复值极限学习机的一般框架","authors":"Guilherme Vieira, Marcos Eduardo Valle","doi":"10.1016/j.jcmds.2022.100032","DOIUrl":null,"url":null,"abstract":"<div><p>This paper aims to establish a framework for extreme learning machines (ELMs) on general hypercomplex algebras. Hypercomplex neural networks are machine learning models that feature higher-dimension numbers as parameters, inputs, and outputs. Firstly, we review broad hypercomplex algebras and show a framework to operate in these algebras through real-valued linear algebra operations in a robust manner. We proceed to explore a handful of well-known four-dimensional examples. Then, we propose the hypercomplex-valued ELMs and derive their learning using a hypercomplex-valued least-squares problem. Finally, we compare real and hypercomplex-valued ELM models’ performance in an experiment on time-series prediction and another on color image auto-encoding. The computational experiments highlight the excellent performance of hypercomplex-valued ELMs to treat multi-dimensional data, including models based on unusual hypercomplex algebras.</p></div>","PeriodicalId":100768,"journal":{"name":"Journal of Computational Mathematics and Data Science","volume":"3 ","pages":"Article 100032"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772415822000062/pdfft?md5=a9358c110cb7cefa5f7093886926f21f&pid=1-s2.0-S2772415822000062-main.pdf","citationCount":"10","resultStr":"{\"title\":\"A general framework for hypercomplex-valued extreme learning machines\",\"authors\":\"Guilherme Vieira, Marcos Eduardo Valle\",\"doi\":\"10.1016/j.jcmds.2022.100032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper aims to establish a framework for extreme learning machines (ELMs) on general hypercomplex algebras. Hypercomplex neural networks are machine learning models that feature higher-dimension numbers as parameters, inputs, and outputs. Firstly, we review broad hypercomplex algebras and show a framework to operate in these algebras through real-valued linear algebra operations in a robust manner. We proceed to explore a handful of well-known four-dimensional examples. Then, we propose the hypercomplex-valued ELMs and derive their learning using a hypercomplex-valued least-squares problem. Finally, we compare real and hypercomplex-valued ELM models’ performance in an experiment on time-series prediction and another on color image auto-encoding. The computational experiments highlight the excellent performance of hypercomplex-valued ELMs to treat multi-dimensional data, including models based on unusual hypercomplex algebras.</p></div>\",\"PeriodicalId\":100768,\"journal\":{\"name\":\"Journal of Computational Mathematics and Data Science\",\"volume\":\"3 \",\"pages\":\"Article 100032\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2772415822000062/pdfft?md5=a9358c110cb7cefa5f7093886926f21f&pid=1-s2.0-S2772415822000062-main.pdf\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Mathematics and Data Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772415822000062\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Mathematics and Data Science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772415822000062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A general framework for hypercomplex-valued extreme learning machines
This paper aims to establish a framework for extreme learning machines (ELMs) on general hypercomplex algebras. Hypercomplex neural networks are machine learning models that feature higher-dimension numbers as parameters, inputs, and outputs. Firstly, we review broad hypercomplex algebras and show a framework to operate in these algebras through real-valued linear algebra operations in a robust manner. We proceed to explore a handful of well-known four-dimensional examples. Then, we propose the hypercomplex-valued ELMs and derive their learning using a hypercomplex-valued least-squares problem. Finally, we compare real and hypercomplex-valued ELM models’ performance in an experiment on time-series prediction and another on color image auto-encoding. The computational experiments highlight the excellent performance of hypercomplex-valued ELMs to treat multi-dimensional data, including models based on unusual hypercomplex algebras.