高能量密度物质的非均匀多尺度方法:连接动力学理论和分子动力学

Gil Shohet , Jacob Price , Jeffrey Haack , Mathieu Marciante , Michael S. Murillo
{"title":"高能量密度物质的非均匀多尺度方法:连接动力学理论和分子动力学","authors":"Gil Shohet ,&nbsp;Jacob Price ,&nbsp;Jeffrey Haack ,&nbsp;Mathieu Marciante ,&nbsp;Michael S. Murillo","doi":"10.1016/j.jcpx.2020.100070","DOIUrl":null,"url":null,"abstract":"<div><p>We have developed a concurrent heterogeneous multiscale method (HMM) framework with a microscale molecular dynamics (MD) model and a macroscale kinetic Vlasov-BGK model. The kinetic model is formulated such that BGK collision times are the closure data obtained from MD. Using the H-theorem, we develop the mathematical link between the MD and the kinetic model. We examine three relaxation processes, energy, momentum, and bump-on-tail, using full microscale MD simulations as a reference solution. We find that solutions computed with the HMM framework offer a significant computational reduction (<span><math><mn>14</mn><mo>×</mo><mo>−</mo><mn>100</mn><mo>×</mo></math></span>) compared with computing a full MD solution, with significant improvements in accuracy compared with a kinetic model using analytical collision times.</p></div>","PeriodicalId":37045,"journal":{"name":"Journal of Computational Physics: X","volume":"8 ","pages":"Article 100070"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.jcpx.2020.100070","citationCount":"3","resultStr":"{\"title\":\"Heterogeneous multiscale method for high energy-density matter: Connecting kinetic theory and molecular dynamics\",\"authors\":\"Gil Shohet ,&nbsp;Jacob Price ,&nbsp;Jeffrey Haack ,&nbsp;Mathieu Marciante ,&nbsp;Michael S. Murillo\",\"doi\":\"10.1016/j.jcpx.2020.100070\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We have developed a concurrent heterogeneous multiscale method (HMM) framework with a microscale molecular dynamics (MD) model and a macroscale kinetic Vlasov-BGK model. The kinetic model is formulated such that BGK collision times are the closure data obtained from MD. Using the H-theorem, we develop the mathematical link between the MD and the kinetic model. We examine three relaxation processes, energy, momentum, and bump-on-tail, using full microscale MD simulations as a reference solution. We find that solutions computed with the HMM framework offer a significant computational reduction (<span><math><mn>14</mn><mo>×</mo><mo>−</mo><mn>100</mn><mo>×</mo></math></span>) compared with computing a full MD solution, with significant improvements in accuracy compared with a kinetic model using analytical collision times.</p></div>\",\"PeriodicalId\":37045,\"journal\":{\"name\":\"Journal of Computational Physics: X\",\"volume\":\"8 \",\"pages\":\"Article 100070\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.jcpx.2020.100070\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Physics: X\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590055220300226\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Physics: X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590055220300226","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

我们开发了一个具有微尺度分子动力学(MD)模型和宏观尺度动力学Vlasov BGK模型的并发异质多尺度方法(HMM)框架。动力学模型的公式化使得BGK碰撞次数是从MD获得的闭合数据。利用H定理,我们建立了MD和动力学模型之间的数学联系。我们使用全微尺度MD模拟作为参考解决方案,研究了三个弛豫过程,能量、动量和尾部碰撞。我们发现,与计算全MD解相比,使用HMM框架计算的解提供了显著的计算减少(14×−100×),与使用分析碰撞时间的动力学模型相比,精度显著提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Heterogeneous multiscale method for high energy-density matter: Connecting kinetic theory and molecular dynamics

We have developed a concurrent heterogeneous multiscale method (HMM) framework with a microscale molecular dynamics (MD) model and a macroscale kinetic Vlasov-BGK model. The kinetic model is formulated such that BGK collision times are the closure data obtained from MD. Using the H-theorem, we develop the mathematical link between the MD and the kinetic model. We examine three relaxation processes, energy, momentum, and bump-on-tail, using full microscale MD simulations as a reference solution. We find that solutions computed with the HMM framework offer a significant computational reduction (14×100×) compared with computing a full MD solution, with significant improvements in accuracy compared with a kinetic model using analytical collision times.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Computational Physics: X
Journal of Computational Physics: X Physics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
6.10
自引率
0.00%
发文量
7
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信