小组的模同构问题——对Eick算法的再认识

Leo Margolis , Tobias Moede
{"title":"小组的模同构问题——对Eick算法的再认识","authors":"Leo Margolis ,&nbsp;Tobias Moede","doi":"10.1016/j.jaca.2022.100001","DOIUrl":null,"url":null,"abstract":"<div><p>We study the Modular Isomorphism Problem for groups of small order based on an improvement of an algorithm described by Eick. Our improvement allows to determine quotients <span><math><mi>I</mi><mo>(</mo><mi>k</mi><mi>G</mi><mo>)</mo><mo>/</mo><mi>I</mi><msup><mrow><mo>(</mo><mi>k</mi><mi>G</mi><mo>)</mo></mrow><mrow><mi>m</mi></mrow></msup></math></span> of the augmentation ideal without first computing the full augmentation ideal <span><math><mi>I</mi><mo>(</mo><mi>k</mi><mi>G</mi><mo>)</mo></math></span>. Our computations yield a positive answer to the MIP for groups of order 3<sup>7</sup> and strongly reduce the cases that need to be checked for groups of order 5<sup>6</sup>. We also show that the counterexamples to the Modular Isomorphism Problem found recently by García-Lucas, Margolis and del Río are the only 2- or 3-generated counterexamples of order 2<sup>9</sup>. Furthermore, we provide a proof for an observation of Bagiński, which is helpful in eliminating computationally difficult cases.</p></div>","PeriodicalId":100767,"journal":{"name":"Journal of Computational Algebra","volume":"1 ","pages":"Article 100001"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772827722000018/pdfft?md5=7c90799e7bad9a898c2e3d2a2e564ebc&pid=1-s2.0-S2772827722000018-main.pdf","citationCount":"7","resultStr":"{\"title\":\"The Modular Isomorphism Problem for small groups – revisiting Eick's algorithm\",\"authors\":\"Leo Margolis ,&nbsp;Tobias Moede\",\"doi\":\"10.1016/j.jaca.2022.100001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We study the Modular Isomorphism Problem for groups of small order based on an improvement of an algorithm described by Eick. Our improvement allows to determine quotients <span><math><mi>I</mi><mo>(</mo><mi>k</mi><mi>G</mi><mo>)</mo><mo>/</mo><mi>I</mi><msup><mrow><mo>(</mo><mi>k</mi><mi>G</mi><mo>)</mo></mrow><mrow><mi>m</mi></mrow></msup></math></span> of the augmentation ideal without first computing the full augmentation ideal <span><math><mi>I</mi><mo>(</mo><mi>k</mi><mi>G</mi><mo>)</mo></math></span>. Our computations yield a positive answer to the MIP for groups of order 3<sup>7</sup> and strongly reduce the cases that need to be checked for groups of order 5<sup>6</sup>. We also show that the counterexamples to the Modular Isomorphism Problem found recently by García-Lucas, Margolis and del Río are the only 2- or 3-generated counterexamples of order 2<sup>9</sup>. Furthermore, we provide a proof for an observation of Bagiński, which is helpful in eliminating computationally difficult cases.</p></div>\",\"PeriodicalId\":100767,\"journal\":{\"name\":\"Journal of Computational Algebra\",\"volume\":\"1 \",\"pages\":\"Article 100001\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2772827722000018/pdfft?md5=7c90799e7bad9a898c2e3d2a2e564ebc&pid=1-s2.0-S2772827722000018-main.pdf\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Algebra\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772827722000018\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Algebra","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772827722000018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

在改进Eick算法的基础上,研究了小阶群的模同构问题。我们的改进允许在不首先计算全增广理想I(kG)的情况下确定增广理想的商I(kG)/I(kG)m。我们的计算得出了37阶组的MIP的肯定答案,并大大减少了56阶组需要检查的情况。我们还证明了García-Lucas、Margolis和del Río最近发现的模同构问题的反例是唯一的2或3生成的29阶反例。此外,我们为Bagiński的观测提供了一个证明,这有助于消除计算困难的情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Modular Isomorphism Problem for small groups – revisiting Eick's algorithm

We study the Modular Isomorphism Problem for groups of small order based on an improvement of an algorithm described by Eick. Our improvement allows to determine quotients I(kG)/I(kG)m of the augmentation ideal without first computing the full augmentation ideal I(kG). Our computations yield a positive answer to the MIP for groups of order 37 and strongly reduce the cases that need to be checked for groups of order 56. We also show that the counterexamples to the Modular Isomorphism Problem found recently by García-Lucas, Margolis and del Río are the only 2- or 3-generated counterexamples of order 29. Furthermore, we provide a proof for an observation of Bagiński, which is helpful in eliminating computationally difficult cases.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信