球面坐标系中使用雅可比多项式的张量演算。第一部分:数学分析和推导

Geoffrey M. Vasil , Daniel Lecoanet , Keaton J. Burns , Jeffrey S. Oishi , Benjamin P. Brown
{"title":"球面坐标系中使用雅可比多项式的张量演算。第一部分:数学分析和推导","authors":"Geoffrey M. Vasil ,&nbsp;Daniel Lecoanet ,&nbsp;Keaton J. Burns ,&nbsp;Jeffrey S. Oishi ,&nbsp;Benjamin P. Brown","doi":"10.1016/j.jcpx.2019.100013","DOIUrl":null,"url":null,"abstract":"<div><p>This paper presents a method for accurate and efficient computations on scalar, vector and tensor fields in three-dimensional spherical polar coordinates. The method uses spin-weighted spherical harmonics in the angular directions and rescaled Jacobi polynomials in the radial direction. For the 2-sphere, spin-weighted harmonics allow for automating calculations in a fashion as similar to Fourier series as possible. Derivative operators act as wavenumber multiplication on a set of spectral coefficients. After transforming the angular directions, a set of orthogonal tensor rotations put the radially dependent spectral coefficients into individual spaces each obeying a particular regularity condition at the origin. These regularity spaces have remarkably simple properties under standard vector-calculus operations, such as <em>gradient</em> and <em>divergence</em>. We use a hierarchy of rescaled Jacobi polynomials for a basis on these regularity spaces. It is possible to select the Jacobi-polynomial parameters such that all relevant operators act in a minimally banded way. Altogether, the geometric structure allows for the accurate and efficient solution of general partial differential equations in the unit ball.</p></div>","PeriodicalId":37045,"journal":{"name":"Journal of Computational Physics: X","volume":"3 ","pages":"Article 100013"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.jcpx.2019.100013","citationCount":"28","resultStr":"{\"title\":\"Tensor calculus in spherical coordinates using Jacobi polynomials. Part-I: Mathematical analysis and derivations\",\"authors\":\"Geoffrey M. Vasil ,&nbsp;Daniel Lecoanet ,&nbsp;Keaton J. Burns ,&nbsp;Jeffrey S. Oishi ,&nbsp;Benjamin P. Brown\",\"doi\":\"10.1016/j.jcpx.2019.100013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper presents a method for accurate and efficient computations on scalar, vector and tensor fields in three-dimensional spherical polar coordinates. The method uses spin-weighted spherical harmonics in the angular directions and rescaled Jacobi polynomials in the radial direction. For the 2-sphere, spin-weighted harmonics allow for automating calculations in a fashion as similar to Fourier series as possible. Derivative operators act as wavenumber multiplication on a set of spectral coefficients. After transforming the angular directions, a set of orthogonal tensor rotations put the radially dependent spectral coefficients into individual spaces each obeying a particular regularity condition at the origin. These regularity spaces have remarkably simple properties under standard vector-calculus operations, such as <em>gradient</em> and <em>divergence</em>. We use a hierarchy of rescaled Jacobi polynomials for a basis on these regularity spaces. It is possible to select the Jacobi-polynomial parameters such that all relevant operators act in a minimally banded way. Altogether, the geometric structure allows for the accurate and efficient solution of general partial differential equations in the unit ball.</p></div>\",\"PeriodicalId\":37045,\"journal\":{\"name\":\"Journal of Computational Physics: X\",\"volume\":\"3 \",\"pages\":\"Article 100013\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.jcpx.2019.100013\",\"citationCount\":\"28\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Physics: X\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590055219300290\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Physics: X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590055219300290","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

摘要

本文提出了一种在三维球极坐标系中精确有效地计算标量场、矢量场和张量场的方法。该方法在角方向上使用自旋加权球面谐波,在径向方向上使用重缩放雅可比多项式。对于双球,自旋加权谐波允许以尽可能类似傅立叶级数的方式进行自动计算。导数算子充当一组谱系数上的波数乘法。在变换角度方向后,一组正交张量旋转将径向相关的谱系数放入各个空间中,每个空间在原点都遵循特定的正则性条件。这些正则空间在标准向量演算运算下具有非常简单的性质,例如梯度和散度。我们使用重缩放雅可比多项式的层次作为这些正则性空间的基础。可以选择雅可比多项式参数,使得所有相关算子以最小带状的方式起作用。总之,几何结构允许在单位球中精确有效地求解一般偏微分方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tensor calculus in spherical coordinates using Jacobi polynomials. Part-I: Mathematical analysis and derivations

This paper presents a method for accurate and efficient computations on scalar, vector and tensor fields in three-dimensional spherical polar coordinates. The method uses spin-weighted spherical harmonics in the angular directions and rescaled Jacobi polynomials in the radial direction. For the 2-sphere, spin-weighted harmonics allow for automating calculations in a fashion as similar to Fourier series as possible. Derivative operators act as wavenumber multiplication on a set of spectral coefficients. After transforming the angular directions, a set of orthogonal tensor rotations put the radially dependent spectral coefficients into individual spaces each obeying a particular regularity condition at the origin. These regularity spaces have remarkably simple properties under standard vector-calculus operations, such as gradient and divergence. We use a hierarchy of rescaled Jacobi polynomials for a basis on these regularity spaces. It is possible to select the Jacobi-polynomial parameters such that all relevant operators act in a minimally banded way. Altogether, the geometric structure allows for the accurate and efficient solution of general partial differential equations in the unit ball.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Computational Physics: X
Journal of Computational Physics: X Physics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
6.10
自引率
0.00%
发文量
7
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信