{"title":"用于非均匀多孔介质中传输的自适应多级时空步进方案(ADM-LTS)","authors":"Ludovica Delpopolo Carciopolo , Matteo Cusini , Luca Formaggia , Hadi Hajibeygi","doi":"10.1016/j.jcpx.2020.100052","DOIUrl":null,"url":null,"abstract":"<div><p>We present ADM-LTS, an adaptive multilevel space-time-stepping scheme for transport in heterogeneous porous media. At each time step, firstly, the flow (pressure) solution is obtained. Then, the transport equation is solved using the ADM-LTS method, which consists of two stages. In the first stage, an initial solution is obtained by imposing the coarsest space-time grid. This initial solution is then improved, in the second stage, by imposing a space-time adaptive grid on the cells where the solution does not satisfy the desired quality. The quality control is based on error estimators with user-defined threshold values. The time-integration procedure, in which the coarsest-scale solution provides local flux boundary conditions for sub-domains with local time refinement, is strictly mass conservative. In addition, the method employs space-time fine grid cells only at the moving saturation fronts. In order to ensure local mass conservation at all levels, finite-volume restriction operators and unity prolongation operators are developed. Several numerical experiments have been performed to analyze the efficiency and accuracy of the proposed ADM-LTS method for both homogeneous and heterogeneous permeability fields on two and three dimensional domains. The results show that the method provides accurate solutions, at the same time it maintains the computational efficiency. The ADM-LTS implementation is publicly available at <span>https://gitlab.com/darsim2simulator</span><svg><path></path></svg>.</p></div>","PeriodicalId":37045,"journal":{"name":"Journal of Computational Physics: X","volume":"6 ","pages":"Article 100052"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.jcpx.2020.100052","citationCount":"10","resultStr":"{\"title\":\"Adaptive multilevel space-time-stepping scheme for transport in heterogeneous porous media (ADM-LTS)\",\"authors\":\"Ludovica Delpopolo Carciopolo , Matteo Cusini , Luca Formaggia , Hadi Hajibeygi\",\"doi\":\"10.1016/j.jcpx.2020.100052\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We present ADM-LTS, an adaptive multilevel space-time-stepping scheme for transport in heterogeneous porous media. At each time step, firstly, the flow (pressure) solution is obtained. Then, the transport equation is solved using the ADM-LTS method, which consists of two stages. In the first stage, an initial solution is obtained by imposing the coarsest space-time grid. This initial solution is then improved, in the second stage, by imposing a space-time adaptive grid on the cells where the solution does not satisfy the desired quality. The quality control is based on error estimators with user-defined threshold values. The time-integration procedure, in which the coarsest-scale solution provides local flux boundary conditions for sub-domains with local time refinement, is strictly mass conservative. In addition, the method employs space-time fine grid cells only at the moving saturation fronts. In order to ensure local mass conservation at all levels, finite-volume restriction operators and unity prolongation operators are developed. Several numerical experiments have been performed to analyze the efficiency and accuracy of the proposed ADM-LTS method for both homogeneous and heterogeneous permeability fields on two and three dimensional domains. The results show that the method provides accurate solutions, at the same time it maintains the computational efficiency. The ADM-LTS implementation is publicly available at <span>https://gitlab.com/darsim2simulator</span><svg><path></path></svg>.</p></div>\",\"PeriodicalId\":37045,\"journal\":{\"name\":\"Journal of Computational Physics: X\",\"volume\":\"6 \",\"pages\":\"Article 100052\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.jcpx.2020.100052\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Physics: X\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590055220300044\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Physics: X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590055220300044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Adaptive multilevel space-time-stepping scheme for transport in heterogeneous porous media (ADM-LTS)
We present ADM-LTS, an adaptive multilevel space-time-stepping scheme for transport in heterogeneous porous media. At each time step, firstly, the flow (pressure) solution is obtained. Then, the transport equation is solved using the ADM-LTS method, which consists of two stages. In the first stage, an initial solution is obtained by imposing the coarsest space-time grid. This initial solution is then improved, in the second stage, by imposing a space-time adaptive grid on the cells where the solution does not satisfy the desired quality. The quality control is based on error estimators with user-defined threshold values. The time-integration procedure, in which the coarsest-scale solution provides local flux boundary conditions for sub-domains with local time refinement, is strictly mass conservative. In addition, the method employs space-time fine grid cells only at the moving saturation fronts. In order to ensure local mass conservation at all levels, finite-volume restriction operators and unity prolongation operators are developed. Several numerical experiments have been performed to analyze the efficiency and accuracy of the proposed ADM-LTS method for both homogeneous and heterogeneous permeability fields on two and three dimensional domains. The results show that the method provides accurate solutions, at the same time it maintains the computational efficiency. The ADM-LTS implementation is publicly available at https://gitlab.com/darsim2simulator.