增量和次塑性模型的对比分析

Patrick Royis
{"title":"增量和次塑性模型的对比分析","authors":"Patrick Royis","doi":"10.1016/S1620-7742(01)01379-4","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper we first establish two necessary and sufficient conditions in order that incremental constitutive equations expressing the strain rate tensor as a function of the Jaumann's derivative of the Cauchy's stress tensor can be inverted under the general form of hypoplastic models when the stress state is located inside the domain bounded by the limit state surface. We are then interested in the physical meaning of these conditions with regard to the incremental response of the material.</p></div>","PeriodicalId":100302,"journal":{"name":"Comptes Rendus de l'Académie des Sciences - Series IIB - Mechanics","volume":"329 9","pages":"Pages 637-642"},"PeriodicalIF":0.0000,"publicationDate":"2001-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1620-7742(01)01379-4","citationCount":"0","resultStr":"{\"title\":\"Analyse contrastive de modèles incrémentaux et hypoplastiques\",\"authors\":\"Patrick Royis\",\"doi\":\"10.1016/S1620-7742(01)01379-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper we first establish two necessary and sufficient conditions in order that incremental constitutive equations expressing the strain rate tensor as a function of the Jaumann's derivative of the Cauchy's stress tensor can be inverted under the general form of hypoplastic models when the stress state is located inside the domain bounded by the limit state surface. We are then interested in the physical meaning of these conditions with regard to the incremental response of the material.</p></div>\",\"PeriodicalId\":100302,\"journal\":{\"name\":\"Comptes Rendus de l'Académie des Sciences - Series IIB - Mechanics\",\"volume\":\"329 9\",\"pages\":\"Pages 637-642\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S1620-7742(01)01379-4\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comptes Rendus de l'Académie des Sciences - Series IIB - Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1620774201013794\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comptes Rendus de l'Académie des Sciences - Series IIB - Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1620774201013794","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们首先建立了两个充要条件,以便当应力状态位于由极限状态表面限定的域内时,将应变速率张量表示为柯西应力张量的Jaumann导数的函数的增量本构方程可以在亚塑性模型的一般形式下反演。然后,我们对这些条件对材料的增量响应的物理意义感兴趣。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analyse contrastive de modèles incrémentaux et hypoplastiques

In this paper we first establish two necessary and sufficient conditions in order that incremental constitutive equations expressing the strain rate tensor as a function of the Jaumann's derivative of the Cauchy's stress tensor can be inverted under the general form of hypoplastic models when the stress state is located inside the domain bounded by the limit state surface. We are then interested in the physical meaning of these conditions with regard to the incremental response of the material.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信