运动发电机的并行时间积分

Andrew T. Clarke , Christopher J. Davies , Daniel Ruprecht , Steven M. Tobias
{"title":"运动发电机的并行时间积分","authors":"Andrew T. Clarke ,&nbsp;Christopher J. Davies ,&nbsp;Daniel Ruprecht ,&nbsp;Steven M. Tobias","doi":"10.1016/j.jcpx.2020.100057","DOIUrl":null,"url":null,"abstract":"<div><p>The precise mechanisms responsible for the natural dynamos in the Earth and Sun are still not fully understood. Numerical simulations of natural dynamos are extremely computationally intensive, and are carried out in parameter regimes many orders of magnitude away from real conditions. Parallelization in space is a common strategy to speed up simulations on high performance computers, but eventually hits a scaling limit. Additional directions of parallelization are desirable to utilise the high number of processor cores now available. Parallel-in-time methods can deliver speed up in addition to that offered by spatial partitioning but have not yet been applied to dynamo simulations. This paper investigates the feasibility of using the parallel-in-time algorithm Parareal to speed up initial value problem simulations of the kinematic dynamo, using the open source Dedalus spectral solver. Both the time independent Roberts and time dependent Galloway-Proctor 2.5D dynamos are investigated over a range of magnetic Reynolds numbers. Speedups beyond those possible from spatial parallelisation are found in both cases. Results for the Galloway-Proctor flow are promising, with Parareal efficiency found to be close to 0.3. Roberts flow results are less efficient, but Parareal still shows some speed up over spatial parallelisation alone. Parallel in space and time speed ups of ∼300 were found for 1600 cores for the Galloway-Proctor flow, with total parallel efficiency of ∼0.16.</p></div>","PeriodicalId":37045,"journal":{"name":"Journal of Computational Physics: X","volume":"7 ","pages":"Article 100057"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.jcpx.2020.100057","citationCount":"7","resultStr":"{\"title\":\"Parallel-in-time integration of kinematic dynamos\",\"authors\":\"Andrew T. Clarke ,&nbsp;Christopher J. Davies ,&nbsp;Daniel Ruprecht ,&nbsp;Steven M. Tobias\",\"doi\":\"10.1016/j.jcpx.2020.100057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The precise mechanisms responsible for the natural dynamos in the Earth and Sun are still not fully understood. Numerical simulations of natural dynamos are extremely computationally intensive, and are carried out in parameter regimes many orders of magnitude away from real conditions. Parallelization in space is a common strategy to speed up simulations on high performance computers, but eventually hits a scaling limit. Additional directions of parallelization are desirable to utilise the high number of processor cores now available. Parallel-in-time methods can deliver speed up in addition to that offered by spatial partitioning but have not yet been applied to dynamo simulations. This paper investigates the feasibility of using the parallel-in-time algorithm Parareal to speed up initial value problem simulations of the kinematic dynamo, using the open source Dedalus spectral solver. Both the time independent Roberts and time dependent Galloway-Proctor 2.5D dynamos are investigated over a range of magnetic Reynolds numbers. Speedups beyond those possible from spatial parallelisation are found in both cases. Results for the Galloway-Proctor flow are promising, with Parareal efficiency found to be close to 0.3. Roberts flow results are less efficient, but Parareal still shows some speed up over spatial parallelisation alone. Parallel in space and time speed ups of ∼300 were found for 1600 cores for the Galloway-Proctor flow, with total parallel efficiency of ∼0.16.</p></div>\",\"PeriodicalId\":37045,\"journal\":{\"name\":\"Journal of Computational Physics: X\",\"volume\":\"7 \",\"pages\":\"Article 100057\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.jcpx.2020.100057\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Physics: X\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590055220300093\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Physics: X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590055220300093","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

地球和太阳中自然发电机的确切机制还没有完全了解。自然发电机的数值模拟计算量非常大,并且是在与实际条件相差许多数量级的参数范围内进行的。太空中的并行化是在高性能计算机上加速模拟的常见策略,但最终会达到扩展限制。为了利用目前可用的大量处理器内核,需要额外的并行化方向。除了空间划分提供的速度外,时间上的并行方法还可以提高速度,但尚未应用于发电机模拟。本文研究了使用并行实时算法Parareal,使用开源的Dedalus谱求解器来加速运动发电机的初值问题模拟的可行性。在一定范围的磁雷诺数上研究了与时间无关的Roberts和与时间相关的Galloway Proctor 2.5D发电机。在这两种情况下都发现了超越空间平行化可能带来的加速。加洛韦-普罗克特流的结果是有希望的,Parareal效率接近0.3。Roberts流的结果效率较低,但Parareal仍然显示出比单独的空间平行化更快的速度。Galloway-Proctor流的1600个芯在空间和时间上的平行速度为~300,总平行效率为~0.16。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Parallel-in-time integration of kinematic dynamos

The precise mechanisms responsible for the natural dynamos in the Earth and Sun are still not fully understood. Numerical simulations of natural dynamos are extremely computationally intensive, and are carried out in parameter regimes many orders of magnitude away from real conditions. Parallelization in space is a common strategy to speed up simulations on high performance computers, but eventually hits a scaling limit. Additional directions of parallelization are desirable to utilise the high number of processor cores now available. Parallel-in-time methods can deliver speed up in addition to that offered by spatial partitioning but have not yet been applied to dynamo simulations. This paper investigates the feasibility of using the parallel-in-time algorithm Parareal to speed up initial value problem simulations of the kinematic dynamo, using the open source Dedalus spectral solver. Both the time independent Roberts and time dependent Galloway-Proctor 2.5D dynamos are investigated over a range of magnetic Reynolds numbers. Speedups beyond those possible from spatial parallelisation are found in both cases. Results for the Galloway-Proctor flow are promising, with Parareal efficiency found to be close to 0.3. Roberts flow results are less efficient, but Parareal still shows some speed up over spatial parallelisation alone. Parallel in space and time speed ups of ∼300 were found for 1600 cores for the Galloway-Proctor flow, with total parallel efficiency of ∼0.16.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Computational Physics: X
Journal of Computational Physics: X Physics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
6.10
自引率
0.00%
发文量
7
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信