{"title":"毛细管区带电泳中化学结构在环糊精立体选择性识别β-阻断剂中的作用","authors":"László Gagyi , Árpád Gyéresi , Ferenc Kilár","doi":"10.1016/j.jbbm.2007.10.004","DOIUrl":null,"url":null,"abstract":"<div><p>Most of the β-blocking drugs for treating diseases of the cardiovascular system are chiral aryloxy–propanolamine derivatives. Tipically, the <em>S</em>(−) enantiomers are more active than the <em>R</em>(+) enantiomers. Only some of them (for example timolol) are used as single enantiomers, the others are employed as racemates. For the determination of the enantiomeric purity of timolol European Pharmacopoeia prescribes an HPLC method using chiral stationary phase. However, the use of chiral capillary zone electrophoresis for the determination of the enantiomeric purity is of pharmaceutical interest. This study describes the application of various cyclodextrin derivatives, hydroxypropyl-β-cyclodextrin, randomly methylated β-cyclodextrin, sulphated β-cyclodextrin and sulphated α-cyclodextrin for the stereoselective analyses of β-blockers. Baseline separation was obtained for bopindolol, carvedilol, mepindolol, pindolol and alprenolol, while only partial separation was observed for sotalol, propranolol, oxprenolol, atenolol, bisoprolol, bupranolol, and metoprolol. The uneven molecular recognition of the enantiomers of the β-blockers, especially of the optical isomers of labetalol and nadolol, showed the importance of the chemical nature of the separators and the analytes.</p></div>","PeriodicalId":15257,"journal":{"name":"Journal of biochemical and biophysical methods","volume":"70 6","pages":"Pages 1268-1275"},"PeriodicalIF":0.0000,"publicationDate":"2008-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.jbbm.2007.10.004","citationCount":"32","resultStr":"{\"title\":\"Role of chemical structure in stereoselective recognition of β-blockers by cyclodextrins in capillary zone electrophoresis\",\"authors\":\"László Gagyi , Árpád Gyéresi , Ferenc Kilár\",\"doi\":\"10.1016/j.jbbm.2007.10.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Most of the β-blocking drugs for treating diseases of the cardiovascular system are chiral aryloxy–propanolamine derivatives. Tipically, the <em>S</em>(−) enantiomers are more active than the <em>R</em>(+) enantiomers. Only some of them (for example timolol) are used as single enantiomers, the others are employed as racemates. For the determination of the enantiomeric purity of timolol European Pharmacopoeia prescribes an HPLC method using chiral stationary phase. However, the use of chiral capillary zone electrophoresis for the determination of the enantiomeric purity is of pharmaceutical interest. This study describes the application of various cyclodextrin derivatives, hydroxypropyl-β-cyclodextrin, randomly methylated β-cyclodextrin, sulphated β-cyclodextrin and sulphated α-cyclodextrin for the stereoselective analyses of β-blockers. Baseline separation was obtained for bopindolol, carvedilol, mepindolol, pindolol and alprenolol, while only partial separation was observed for sotalol, propranolol, oxprenolol, atenolol, bisoprolol, bupranolol, and metoprolol. The uneven molecular recognition of the enantiomers of the β-blockers, especially of the optical isomers of labetalol and nadolol, showed the importance of the chemical nature of the separators and the analytes.</p></div>\",\"PeriodicalId\":15257,\"journal\":{\"name\":\"Journal of biochemical and biophysical methods\",\"volume\":\"70 6\",\"pages\":\"Pages 1268-1275\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.jbbm.2007.10.004\",\"citationCount\":\"32\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of biochemical and biophysical methods\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0165022X07001698\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biochemical and biophysical methods","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165022X07001698","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Role of chemical structure in stereoselective recognition of β-blockers by cyclodextrins in capillary zone electrophoresis
Most of the β-blocking drugs for treating diseases of the cardiovascular system are chiral aryloxy–propanolamine derivatives. Tipically, the S(−) enantiomers are more active than the R(+) enantiomers. Only some of them (for example timolol) are used as single enantiomers, the others are employed as racemates. For the determination of the enantiomeric purity of timolol European Pharmacopoeia prescribes an HPLC method using chiral stationary phase. However, the use of chiral capillary zone electrophoresis for the determination of the enantiomeric purity is of pharmaceutical interest. This study describes the application of various cyclodextrin derivatives, hydroxypropyl-β-cyclodextrin, randomly methylated β-cyclodextrin, sulphated β-cyclodextrin and sulphated α-cyclodextrin for the stereoselective analyses of β-blockers. Baseline separation was obtained for bopindolol, carvedilol, mepindolol, pindolol and alprenolol, while only partial separation was observed for sotalol, propranolol, oxprenolol, atenolol, bisoprolol, bupranolol, and metoprolol. The uneven molecular recognition of the enantiomers of the β-blockers, especially of the optical isomers of labetalol and nadolol, showed the importance of the chemical nature of the separators and the analytes.