{"title":"测定土壤物理性质的探针-麦克风仪器:在多孔材料模型中的测试","authors":"J.M. Sabatier , D.C. Sokol , C.K. Frederickson , M.J.M. Römkens , E.H. Grissinger , J.C. Shipps","doi":"10.1016/0933-3630(95)00014-3","DOIUrl":null,"url":null,"abstract":"<div><p>An acoustic technique for evaluating soil physical properties is described and tested in model porous materials. A probe microphone is used to measure the acoustic signal attenuation and phase speed. Emphasis is on the probe construction, insertion in soils and reduction of acoustic data to predict tortuosity and an effective air-flow resistivity of the soil. Well-known capillary-tube models of porous materials which incorporate these two porous material properties are used to invert the acoustic data. The probe microphone, associated hardware, data acquisition and analyses are implemented on a personal computer. The system can provide real time prediction of the soil properties in the field. Measurements in three materials: glass beads, washed sand and loess soil are analyzed and discussed. The instrumentation works well in the glass beads and washed sand tested; however, in the loess soil tested some restrictions occur.</p></div>","PeriodicalId":101170,"journal":{"name":"Soil Technology","volume":"8 4","pages":"Pages 259-274"},"PeriodicalIF":0.0000,"publicationDate":"1996-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0933-3630(95)00014-3","citationCount":"27","resultStr":"{\"title\":\"Probe microphone instrumentation for determining soil physical properties: testing in model porous materials\",\"authors\":\"J.M. Sabatier , D.C. Sokol , C.K. Frederickson , M.J.M. Römkens , E.H. Grissinger , J.C. Shipps\",\"doi\":\"10.1016/0933-3630(95)00014-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>An acoustic technique for evaluating soil physical properties is described and tested in model porous materials. A probe microphone is used to measure the acoustic signal attenuation and phase speed. Emphasis is on the probe construction, insertion in soils and reduction of acoustic data to predict tortuosity and an effective air-flow resistivity of the soil. Well-known capillary-tube models of porous materials which incorporate these two porous material properties are used to invert the acoustic data. The probe microphone, associated hardware, data acquisition and analyses are implemented on a personal computer. The system can provide real time prediction of the soil properties in the field. Measurements in three materials: glass beads, washed sand and loess soil are analyzed and discussed. The instrumentation works well in the glass beads and washed sand tested; however, in the loess soil tested some restrictions occur.</p></div>\",\"PeriodicalId\":101170,\"journal\":{\"name\":\"Soil Technology\",\"volume\":\"8 4\",\"pages\":\"Pages 259-274\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/0933-3630(95)00014-3\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Soil Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/0933363095000143\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soil Technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/0933363095000143","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Probe microphone instrumentation for determining soil physical properties: testing in model porous materials
An acoustic technique for evaluating soil physical properties is described and tested in model porous materials. A probe microphone is used to measure the acoustic signal attenuation and phase speed. Emphasis is on the probe construction, insertion in soils and reduction of acoustic data to predict tortuosity and an effective air-flow resistivity of the soil. Well-known capillary-tube models of porous materials which incorporate these two porous material properties are used to invert the acoustic data. The probe microphone, associated hardware, data acquisition and analyses are implemented on a personal computer. The system can provide real time prediction of the soil properties in the field. Measurements in three materials: glass beads, washed sand and loess soil are analyzed and discussed. The instrumentation works well in the glass beads and washed sand tested; however, in the loess soil tested some restrictions occur.