Ckmeans.1d.dp:动态规划的一维最优k均值聚类。

IF 2.3 4区 计算机科学 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
R Journal Pub Date : 2011-12-01
Haizhou Wang, Mingzhou Song
{"title":"Ckmeans.1d.dp:动态规划的一维最优k均值聚类。","authors":"Haizhou Wang, Mingzhou Song","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>The heuristic <i>k</i>-means algorithm, widely used for cluster analysis, does not guarantee optimality. We developed a dynamic programming algorithm for optimal one-dimensional clustering. The algorithm is implemented as an R package called <b>Ckmeans.1d.dp</b>. We demonstrate its advantage in optimality and runtime over the standard iterative <i>k</i>-means algorithm.</p>","PeriodicalId":51285,"journal":{"name":"R Journal","volume":"3 2","pages":"29-33"},"PeriodicalIF":2.3000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5148156/pdf/","citationCount":"0","resultStr":"{\"title\":\"Ckmeans.1d.dp: Optimal <i>k</i>-means Clustering in One Dimension by Dynamic Programming.\",\"authors\":\"Haizhou Wang, Mingzhou Song\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The heuristic <i>k</i>-means algorithm, widely used for cluster analysis, does not guarantee optimality. We developed a dynamic programming algorithm for optimal one-dimensional clustering. The algorithm is implemented as an R package called <b>Ckmeans.1d.dp</b>. We demonstrate its advantage in optimality and runtime over the standard iterative <i>k</i>-means algorithm.</p>\",\"PeriodicalId\":51285,\"journal\":{\"name\":\"R Journal\",\"volume\":\"3 2\",\"pages\":\"29-33\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2011-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5148156/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"R Journal\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"R Journal","FirstCategoryId":"94","ListUrlMain":"","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

启发式k-均值算法被广泛用于聚类分析,但不能保证最优性。我们开发了一种用于最优一维聚类的动态规划算法。该算法被实现为一个名为Ckmeans.1d.dp的R包。我们证明了它在最优性和运行时间方面优于标准迭代k-means算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ckmeans.1d.dp: Optimal k-means Clustering in One Dimension by Dynamic Programming.

The heuristic k-means algorithm, widely used for cluster analysis, does not guarantee optimality. We developed a dynamic programming algorithm for optimal one-dimensional clustering. The algorithm is implemented as an R package called Ckmeans.1d.dp. We demonstrate its advantage in optimality and runtime over the standard iterative k-means algorithm.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
R Journal
R Journal COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS-STATISTICS & PROBABILITY
CiteScore
2.70
自引率
0.00%
发文量
40
审稿时长
>12 weeks
期刊介绍: The R Journal is the open access, refereed journal of the R project for statistical computing. It features short to medium length articles covering topics that should be of interest to users or developers of R. The R Journal intends to reach a wide audience and have a thorough review process. Papers are expected to be reasonably short, clearly written, not too technical, and of course focused on R. Authors of refereed articles should take care to: - put their contribution in context, in particular discuss related R functions or packages; - explain the motivation for their contribution; - provide code examples that are reproducible.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信