Measuring costs of guideline-driven mental health care: the Texas Medication Algorithm Project
Background: Algorithms describe clinical choices to treat a specific disorder. To many, algorithms serve as important tools helping practitioners make informed choices about how best to treat patients, achieving better outcomes more quickly and at a lower cost. Appearing as flow charts and decision trees, algorithms are developed during consensus conferences by leading experts who explore the latest scientific evidence to describe optimal treatment for each disorder. Despite a focus on ‘optimal’ care, there has been little discussion in the literature concerning how costs should be defined and measured in the context of algorithm-based practices. Aims of the study: This paper describes the strategy to measure costs for the Texas Medication Algorithm project, or TMAP. Launched by the Texas Department of Mental Health and Mental Retardation and the University of Texas Southwestern Medical Center at Dallas, this multi-site study investigates outcomes and costs of medication algorithms for bipolar disorder, schizophrenia and depression. Methods: To balance costs with outcomes, we turned to cost-effectiveness analyses as a framework to define and measure costs. Alternative strategies (cost–benefit, cost–utility, cost-of-illness) were inappropriate since algorithms are not intended to guide resource allocation across different diseases or between health- and non-health-related commodities. ‘Costs’ are operationalized consistent with the framework presented by the United States Public Health Service Panel on Cost Effectiveness in Medicine.
期刊介绍:
The Journal of Mental Health Policy and Economics publishes high quality empirical, analytical and methodologic papers focusing on the application of health and economic research and policy analysis in mental health. It offers an international forum to enable the different participants in mental health policy and economics - psychiatrists involved in research and care and other mental health workers, health services researchers, health economists, policy makers, public and private health providers, advocacy groups, and the pharmaceutical industry - to share common information in a common language.