具有需求不确定性的网络上的极小极大遗憾p中心定位

I. Averbakh, Oded Berman
{"title":"具有需求不确定性的网络上的极小极大遗憾p中心定位","authors":"I. Averbakh,&nbsp;Oded Berman","doi":"10.1016/S0966-8349(98)00033-3","DOIUrl":null,"url":null,"abstract":"<div><p>We consider the weighted <em>p</em>-center problem on a transportation network with uncertain weights of nodes. Specifically, for each node, an interval estimate of its weight is known. The objective is to find the ‘minimax regret’ solution i.e. to minimize the worst-case loss in the objective function that may occur because a decision is made without knowing which state of nature will take place. We discuss properties of the problem and show that the problem can be solved by means of solving (<em>n</em> + 1) regular weighted <em>p</em>-center problems. This leads to polynomial algorithms for the cases where the regular weighted <em>p</em>-center problem can be solved in polynomial time, e.g. for the case of a tree network, and for the case of a general network with <em>p</em> = 1.</p></div>","PeriodicalId":100880,"journal":{"name":"Location Science","volume":"5 4","pages":"Pages 247-254"},"PeriodicalIF":0.0000,"publicationDate":"1997-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0966-8349(98)00033-3","citationCount":"113","resultStr":"{\"title\":\"Minimax regret p-center location on a network with demand uncertainty\",\"authors\":\"I. Averbakh,&nbsp;Oded Berman\",\"doi\":\"10.1016/S0966-8349(98)00033-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We consider the weighted <em>p</em>-center problem on a transportation network with uncertain weights of nodes. Specifically, for each node, an interval estimate of its weight is known. The objective is to find the ‘minimax regret’ solution i.e. to minimize the worst-case loss in the objective function that may occur because a decision is made without knowing which state of nature will take place. We discuss properties of the problem and show that the problem can be solved by means of solving (<em>n</em> + 1) regular weighted <em>p</em>-center problems. This leads to polynomial algorithms for the cases where the regular weighted <em>p</em>-center problem can be solved in polynomial time, e.g. for the case of a tree network, and for the case of a general network with <em>p</em> = 1.</p></div>\",\"PeriodicalId\":100880,\"journal\":{\"name\":\"Location Science\",\"volume\":\"5 4\",\"pages\":\"Pages 247-254\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S0966-8349(98)00033-3\",\"citationCount\":\"113\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Location Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0966834998000333\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Location Science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0966834998000333","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 113

摘要

我们考虑具有不确定节点权重的运输网络上的加权p中心问题。具体地,对于每个节点,其权重的区间估计是已知的。目标是找到“最小-最大遗憾”解决方案,即最大限度地减少目标函数中可能发生的最坏情况损失,因为在不知道会发生哪种自然状态的情况下做出决策。我们讨论了该问题的性质,并证明了该问题可以通过求解(n+1)个正则加权p中心问题来求解。这导致了对于规则加权p中心问题可以在多项式时间内求解的情况的多项式算法,例如对于树网络的情况和对于p=1的一般网络的情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Minimax regret p-center location on a network with demand uncertainty

We consider the weighted p-center problem on a transportation network with uncertain weights of nodes. Specifically, for each node, an interval estimate of its weight is known. The objective is to find the ‘minimax regret’ solution i.e. to minimize the worst-case loss in the objective function that may occur because a decision is made without knowing which state of nature will take place. We discuss properties of the problem and show that the problem can be solved by means of solving (n + 1) regular weighted p-center problems. This leads to polynomial algorithms for the cases where the regular weighted p-center problem can be solved in polynomial time, e.g. for the case of a tree network, and for the case of a general network with p = 1.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信