致癌作用的非齐次两阶段模型

W.Y. Tan, C.C. Brown
{"title":"致癌作用的非齐次两阶段模型","authors":"W.Y. Tan,&nbsp;C.C. Brown","doi":"10.1016/0270-0255(87)90463-5","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper we extend the Moolgavkar-Venzon-Knudson two-stage model into nonhomogeneous cases. The probability generating functions (PGF) of initiated cells and tumors are derived under very general conditions. Using these PGFs we then obtain expected incidence functions of tumor and provide an iterative procedure for computing probability distributions of tumors. These results can be used to take account of time-varying exposures to help identify etiologic agents and to assess their mechanisms of action in epidemiologic studies.</p></div>","PeriodicalId":100895,"journal":{"name":"Mathematical Modelling","volume":"9 8","pages":"Pages 631-642"},"PeriodicalIF":0.0000,"publicationDate":"1987-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0270-0255(87)90463-5","citationCount":"0","resultStr":"{\"title\":\"A nonhomogeneous two-stage model of carcinogenesis\",\"authors\":\"W.Y. Tan,&nbsp;C.C. Brown\",\"doi\":\"10.1016/0270-0255(87)90463-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper we extend the Moolgavkar-Venzon-Knudson two-stage model into nonhomogeneous cases. The probability generating functions (PGF) of initiated cells and tumors are derived under very general conditions. Using these PGFs we then obtain expected incidence functions of tumor and provide an iterative procedure for computing probability distributions of tumors. These results can be used to take account of time-varying exposures to help identify etiologic agents and to assess their mechanisms of action in epidemiologic studies.</p></div>\",\"PeriodicalId\":100895,\"journal\":{\"name\":\"Mathematical Modelling\",\"volume\":\"9 8\",\"pages\":\"Pages 631-642\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1987-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/0270-0255(87)90463-5\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Modelling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/0270025587904635\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Modelling","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/0270025587904635","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文将Moolgavkar—Venzon—Knudson两阶段模型推广到非齐次情形。起始细胞和肿瘤的概率生成函数(PGF)是在非常普遍的条件下得出的。使用这些PGF,我们获得了肿瘤的预期发病率函数,并提供了计算肿瘤概率分布的迭代程序。这些结果可用于考虑时变暴露,以帮助确定病原体,并在流行病学研究中评估其作用机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A nonhomogeneous two-stage model of carcinogenesis

In this paper we extend the Moolgavkar-Venzon-Knudson two-stage model into nonhomogeneous cases. The probability generating functions (PGF) of initiated cells and tumors are derived under very general conditions. Using these PGFs we then obtain expected incidence functions of tumor and provide an iterative procedure for computing probability distributions of tumors. These results can be used to take account of time-varying exposures to help identify etiologic agents and to assess their mechanisms of action in epidemiologic studies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信