在动态变化的网络中定位中心以及相关问题

Dorit S. Hochbaum , Anu Pathria
{"title":"在动态变化的网络中定位中心以及相关问题","authors":"Dorit S. Hochbaum ,&nbsp;Anu Pathria","doi":"10.1016/S0966-8349(98)00048-5","DOIUrl":null,"url":null,"abstract":"<div><p>In a dynamically changing network, the costs or distances between locations are changing in each discrete time period. We consider the location of emergency facilities that must minimize the maximum distance to any customer on the network across <em>all</em> time periods. We call the problem of locating <em>p</em> centers over <em>k</em> underlying networks corresponding to <em>k</em> periods the <em>k-Network p-Center</em> problem. The problem is considered when, in each period, the network satisfies the triangle inequality. In this paper, we provide a polynomial time 3-approximation algorithm for <em>Δ</em> <em>k-Network p-Center</em> for the case <em>k</em>=2. We discuss generalizations inspired by this problem to other optimization problems with multiple underlying networks and the objective of finding a single solution that varies as little as possible from the optimum for each network. The additional combinatorial problems discussed include: sorting; perfect matching; shortest path; minimum spanning tree; and minimum cut. All are shown to be NP-hard for <em>k</em>⩾2.</p></div>","PeriodicalId":100880,"journal":{"name":"Location Science","volume":"6 1","pages":"Pages 243-256"},"PeriodicalIF":0.0000,"publicationDate":"1998-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0966-8349(98)00048-5","citationCount":"31","resultStr":"{\"title\":\"Locating centers in a dynamically changing network, and related problems\",\"authors\":\"Dorit S. Hochbaum ,&nbsp;Anu Pathria\",\"doi\":\"10.1016/S0966-8349(98)00048-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In a dynamically changing network, the costs or distances between locations are changing in each discrete time period. We consider the location of emergency facilities that must minimize the maximum distance to any customer on the network across <em>all</em> time periods. We call the problem of locating <em>p</em> centers over <em>k</em> underlying networks corresponding to <em>k</em> periods the <em>k-Network p-Center</em> problem. The problem is considered when, in each period, the network satisfies the triangle inequality. In this paper, we provide a polynomial time 3-approximation algorithm for <em>Δ</em> <em>k-Network p-Center</em> for the case <em>k</em>=2. We discuss generalizations inspired by this problem to other optimization problems with multiple underlying networks and the objective of finding a single solution that varies as little as possible from the optimum for each network. The additional combinatorial problems discussed include: sorting; perfect matching; shortest path; minimum spanning tree; and minimum cut. All are shown to be NP-hard for <em>k</em>⩾2.</p></div>\",\"PeriodicalId\":100880,\"journal\":{\"name\":\"Location Science\",\"volume\":\"6 1\",\"pages\":\"Pages 243-256\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S0966-8349(98)00048-5\",\"citationCount\":\"31\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Location Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0966834998000485\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Location Science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0966834998000485","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31

摘要

在动态变化的网络中,位置之间的成本或距离在每个离散的时间段内都在变化。我们考虑应急设施的位置,必须在所有时间段内尽量减少与网络上任何客户的最大距离。我们将在对应于k个周期的k个底层网络上定位p个中心的问题称为k网络p中心问题。当网络在每个周期满足三角形不等式时,就会考虑这个问题。在本文中,我们提供了一个在k=2的情况下Δk-网络p-Center的多项式时间3-近似算法。我们讨论了受此问题启发,将其推广到具有多个底层网络的其他优化问题,并讨论了为每个网络找到一个尽可能小的最优解的目标。讨论的其他组合问题包括:排序;完美匹配;最短路径;最小生成树;和最小切割。对于k⩾2,所有结果都是NP难的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Locating centers in a dynamically changing network, and related problems

In a dynamically changing network, the costs or distances between locations are changing in each discrete time period. We consider the location of emergency facilities that must minimize the maximum distance to any customer on the network across all time periods. We call the problem of locating p centers over k underlying networks corresponding to k periods the k-Network p-Center problem. The problem is considered when, in each period, the network satisfies the triangle inequality. In this paper, we provide a polynomial time 3-approximation algorithm for Δ k-Network p-Center for the case k=2. We discuss generalizations inspired by this problem to other optimization problems with multiple underlying networks and the objective of finding a single solution that varies as little as possible from the optimum for each network. The additional combinatorial problems discussed include: sorting; perfect matching; shortest path; minimum spanning tree; and minimum cut. All are shown to be NP-hard for k⩾2.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信