大规模网络定位问题的聚合方法实验

Gunnar Andersson , Richard L. Francis , Tomas Normark , M.Brenda Rayco
{"title":"大规模网络定位问题的聚合方法实验","authors":"Gunnar Andersson ,&nbsp;Richard L. Francis ,&nbsp;Tomas Normark ,&nbsp;M.Brenda Rayco","doi":"10.1016/S0966-8349(98)00045-X","DOIUrl":null,"url":null,"abstract":"<div><p>We present demand point aggregation procedures for the <em>p</em>-median and <em>p</em>-center network location models. A coarse aggregation structure is initially obtained by partitioning the demand points according to a grid imposed over the demand region. A “row-column’’ aggregation algorithm is used to determine the spacing of rows and columns of the grid to exploit the problem structure. A second step involves locating aggregate demand points on the subnetworks induced by the cells of the grid partitioning. The aggregate demand point set so obtained then defines an approximating location model; alternatively, it may initialize an iterative network location–allocation procedure to find the aggregate demand points. We have tested our procedures on data sets based on maps from the TIGER/Line database of the United States Census Bureau, and report on our computational experience.</p></div>","PeriodicalId":100880,"journal":{"name":"Location Science","volume":"6 1","pages":"Pages 25-39"},"PeriodicalIF":0.0000,"publicationDate":"1998-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0966-8349(98)00045-X","citationCount":"24","resultStr":"{\"title\":\"Aggregation method experimentation for large-scale network location problems\",\"authors\":\"Gunnar Andersson ,&nbsp;Richard L. Francis ,&nbsp;Tomas Normark ,&nbsp;M.Brenda Rayco\",\"doi\":\"10.1016/S0966-8349(98)00045-X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We present demand point aggregation procedures for the <em>p</em>-median and <em>p</em>-center network location models. A coarse aggregation structure is initially obtained by partitioning the demand points according to a grid imposed over the demand region. A “row-column’’ aggregation algorithm is used to determine the spacing of rows and columns of the grid to exploit the problem structure. A second step involves locating aggregate demand points on the subnetworks induced by the cells of the grid partitioning. The aggregate demand point set so obtained then defines an approximating location model; alternatively, it may initialize an iterative network location–allocation procedure to find the aggregate demand points. We have tested our procedures on data sets based on maps from the TIGER/Line database of the United States Census Bureau, and report on our computational experience.</p></div>\",\"PeriodicalId\":100880,\"journal\":{\"name\":\"Location Science\",\"volume\":\"6 1\",\"pages\":\"Pages 25-39\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S0966-8349(98)00045-X\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Location Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S096683499800045X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Location Science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S096683499800045X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

摘要

我们提出了p-中值和p-中心网络位置模型的需求点聚合过程。粗聚合结构最初是通过根据在需求区域上施加的网格划分需求点来获得的。A.“行-列”聚合算法用于确定网格的行和列的间距,以利用问题结构。第二步涉及定位由网格分区的单元引起的子网络上的聚合需求点。然后,获得的聚合需求点集定义了近似位置模型;或者,它可以初始化迭代n网络位置-寻找总需求点的分配过程。我们在基于美国人口普查局TIGER/Line数据库地图的数据集上测试了我们的程序,并报告了我们的计算经验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Aggregation method experimentation for large-scale network location problems

We present demand point aggregation procedures for the p-median and p-center network location models. A coarse aggregation structure is initially obtained by partitioning the demand points according to a grid imposed over the demand region. A “row-column’’ aggregation algorithm is used to determine the spacing of rows and columns of the grid to exploit the problem structure. A second step involves locating aggregate demand points on the subnetworks induced by the cells of the grid partitioning. The aggregate demand point set so obtained then defines an approximating location model; alternatively, it may initialize an iterative network location–allocation procedure to find the aggregate demand points. We have tested our procedures on data sets based on maps from the TIGER/Line database of the United States Census Bureau, and report on our computational experience.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信