具有最小距离约束的单设施选址问题

Yael Konforty, Arie Tamir
{"title":"具有最小距离约束的单设施选址问题","authors":"Yael Konforty,&nbsp;Arie Tamir","doi":"10.1016/S0966-8349(98)00032-1","DOIUrl":null,"url":null,"abstract":"<div><p>We consider the problem of locating a single facility (server) in the plane, where the location of the facility is restricted to be outside a specified forbidden region (neighborhood) around each demand point. Two models are discussed. In the restricted 1-median model, the objective is to minimize the sum of the weighted rectilinear distances from the <em>n</em> customers to the facility. We present an <em>O</em>(<em>n</em> <em>log</em> <em>n</em>) algorithm for this model, improving upon the <em>O</em>(<em>n</em><sup>3</sup>) complexity bound of the algorithm by Brimberg and Wesolowsky (1995). In the restricted 1-center model the objective is to minimize the maximum of the weighted rectilinear distances between the customers and the serving facility. We present an <em>O</em>(<em>n</em> <em>log</em> <em>n</em>) algorithm for finding an optimal 1-center. We also discuss some related models, involving the Euclidean norm.</p></div>","PeriodicalId":100880,"journal":{"name":"Location Science","volume":"5 3","pages":"Pages 147-163"},"PeriodicalIF":0.0000,"publicationDate":"1997-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0966-8349(98)00032-1","citationCount":"10","resultStr":"{\"title\":\"The single facility location problem with minimum distance constraints\",\"authors\":\"Yael Konforty,&nbsp;Arie Tamir\",\"doi\":\"10.1016/S0966-8349(98)00032-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We consider the problem of locating a single facility (server) in the plane, where the location of the facility is restricted to be outside a specified forbidden region (neighborhood) around each demand point. Two models are discussed. In the restricted 1-median model, the objective is to minimize the sum of the weighted rectilinear distances from the <em>n</em> customers to the facility. We present an <em>O</em>(<em>n</em> <em>log</em> <em>n</em>) algorithm for this model, improving upon the <em>O</em>(<em>n</em><sup>3</sup>) complexity bound of the algorithm by Brimberg and Wesolowsky (1995). In the restricted 1-center model the objective is to minimize the maximum of the weighted rectilinear distances between the customers and the serving facility. We present an <em>O</em>(<em>n</em> <em>log</em> <em>n</em>) algorithm for finding an optimal 1-center. We also discuss some related models, involving the Euclidean norm.</p></div>\",\"PeriodicalId\":100880,\"journal\":{\"name\":\"Location Science\",\"volume\":\"5 3\",\"pages\":\"Pages 147-163\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S0966-8349(98)00032-1\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Location Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0966834998000321\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Location Science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0966834998000321","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

我们考虑在平面中定位单个设施(服务器)的问题,其中设施的位置被限制在每个需求点周围的指定禁区(邻域)之外。讨论了两个模型。在受限的1-中间模型中,目标是最小化从n个客户到设施的加权直线距离之和。在Brimberg和Wesolowsky(1995)算法的O(n3)复杂度界的基础上,我们提出了一种适用于该模型的O(n-logn)算法。在受限的单中心模型中,目标是最小化客户和服务设施之间的加权直线距离的最大值。我们提出了一个O(n-logn)算法来寻找最优1-中心。我们还讨论了一些相关的模型,包括欧几里得范数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The single facility location problem with minimum distance constraints

We consider the problem of locating a single facility (server) in the plane, where the location of the facility is restricted to be outside a specified forbidden region (neighborhood) around each demand point. Two models are discussed. In the restricted 1-median model, the objective is to minimize the sum of the weighted rectilinear distances from the n customers to the facility. We present an O(n log n) algorithm for this model, improving upon the O(n3) complexity bound of the algorithm by Brimberg and Wesolowsky (1995). In the restricted 1-center model the objective is to minimize the maximum of the weighted rectilinear distances between the customers and the serving facility. We present an O(n log n) algorithm for finding an optimal 1-center. We also discuss some related models, involving the Euclidean norm.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信