变形条件和织构对AZ31镁高温流动应力的影响

M.R Barnett
{"title":"变形条件和织构对AZ31镁高温流动应力的影响","authors":"M.R Barnett","doi":"10.1016/S1471-5317(01)00010-4","DOIUrl":null,"url":null,"abstract":"<div><p>The evolution of hot working flow stress with strain is examined in torsion, uniaxial compression and channel die compression. The flow stress was found to be strongly dependent on texture and deformation mode. At low strains this dependency accounted for a difference in flow stress of up to a factor of two. At higher strains the influence of texture and deformation mode was less marked. The stresses corresponding to an equivalent strain of 0.5 were modelled using a power law expression with an activation energy of 147 kJ/mol and a strain rate exponent of 0.15. The influence of texture and deformation mode on flow stress is rationalised in terms of the influence of prismatic slip, twinning and dynamic recrystallisation on deformation stress and structure.</p></div>","PeriodicalId":100798,"journal":{"name":"Journal of Light Metals","volume":"1 3","pages":"Pages 167-177"},"PeriodicalIF":0.0000,"publicationDate":"2001-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1471-5317(01)00010-4","citationCount":"220","resultStr":"{\"title\":\"Influence of deformation conditions and texture on the high temperature flow stress of magnesium AZ31\",\"authors\":\"M.R Barnett\",\"doi\":\"10.1016/S1471-5317(01)00010-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The evolution of hot working flow stress with strain is examined in torsion, uniaxial compression and channel die compression. The flow stress was found to be strongly dependent on texture and deformation mode. At low strains this dependency accounted for a difference in flow stress of up to a factor of two. At higher strains the influence of texture and deformation mode was less marked. The stresses corresponding to an equivalent strain of 0.5 were modelled using a power law expression with an activation energy of 147 kJ/mol and a strain rate exponent of 0.15. The influence of texture and deformation mode on flow stress is rationalised in terms of the influence of prismatic slip, twinning and dynamic recrystallisation on deformation stress and structure.</p></div>\",\"PeriodicalId\":100798,\"journal\":{\"name\":\"Journal of Light Metals\",\"volume\":\"1 3\",\"pages\":\"Pages 167-177\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S1471-5317(01)00010-4\",\"citationCount\":\"220\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Light Metals\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1471531701000104\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Light Metals","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1471531701000104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 220

摘要

研究了在扭转、单轴压缩和通道压模压缩条件下热加工流动应力随应变的演化规律。流动应力强烈依赖于组织和变形模式。在低应变下,这种依赖性导致了高达2倍的流动应力差异。在较高的应变下,织构和变形模式的影响较小。使用活化能为147kJ/mol、应变速率指数为0.15的幂律表达式对对应于0.5的等效应变的应力进行建模。根据棱柱滑移、孪晶和动态再结晶对变形应力和组织的影响,合理化了织构和变形模式对流动应力的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Influence of deformation conditions and texture on the high temperature flow stress of magnesium AZ31

The evolution of hot working flow stress with strain is examined in torsion, uniaxial compression and channel die compression. The flow stress was found to be strongly dependent on texture and deformation mode. At low strains this dependency accounted for a difference in flow stress of up to a factor of two. At higher strains the influence of texture and deformation mode was less marked. The stresses corresponding to an equivalent strain of 0.5 were modelled using a power law expression with an activation energy of 147 kJ/mol and a strain rate exponent of 0.15. The influence of texture and deformation mode on flow stress is rationalised in terms of the influence of prismatic slip, twinning and dynamic recrystallisation on deformation stress and structure.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信