复杂层次数据的多可比可视化分析方法

Q3 Computer Science
Chen Yi , Dong Yu , Sun Yuehong , Liang Jie
{"title":"复杂层次数据的多可比可视化分析方法","authors":"Chen Yi ,&nbsp;Dong Yu ,&nbsp;Sun Yuehong ,&nbsp;Liang Jie","doi":"10.1016/j.jvlc.2018.02.003","DOIUrl":null,"url":null,"abstract":"<div><p>Maximum residue limit (MRL) standard which specifies the highest level of every pesticide residue in different agricultural products plays a critical role in food safety. However, such standards which related to the characteristics of pesticides and the classification of agricultural products which organized into a hierarchical structure are complex and vary widely across different regions or countries. So it is a big challenge to compare multi-regional MRL standard data comprehensively. In this paper, we present a multi-comparable visual analytic approach for complex hierarchical data and a visual analytics system (McVA) to support multiple comparison and evaluation of MRL standard. With a cooperative multi-view visual design, our proposed approach links the hierarchies of MRL datasets and provides the capacity for comparison at different levels and dimensions. We also introduce a metric model for evaluating the completeness and strictness of MRL standards quantitatively. The case study of real problems and the positive feedback from domain experts demonstrate the effectiveness of this approach.</p></div>","PeriodicalId":54754,"journal":{"name":"Journal of Visual Languages and Computing","volume":"47 ","pages":"Pages 19-30"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.jvlc.2018.02.003","citationCount":"11","resultStr":"{\"title\":\"A Multi-comparable visual analytic approach for complex hierarchical data\",\"authors\":\"Chen Yi ,&nbsp;Dong Yu ,&nbsp;Sun Yuehong ,&nbsp;Liang Jie\",\"doi\":\"10.1016/j.jvlc.2018.02.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Maximum residue limit (MRL) standard which specifies the highest level of every pesticide residue in different agricultural products plays a critical role in food safety. However, such standards which related to the characteristics of pesticides and the classification of agricultural products which organized into a hierarchical structure are complex and vary widely across different regions or countries. So it is a big challenge to compare multi-regional MRL standard data comprehensively. In this paper, we present a multi-comparable visual analytic approach for complex hierarchical data and a visual analytics system (McVA) to support multiple comparison and evaluation of MRL standard. With a cooperative multi-view visual design, our proposed approach links the hierarchies of MRL datasets and provides the capacity for comparison at different levels and dimensions. We also introduce a metric model for evaluating the completeness and strictness of MRL standards quantitatively. The case study of real problems and the positive feedback from domain experts demonstrate the effectiveness of this approach.</p></div>\",\"PeriodicalId\":54754,\"journal\":{\"name\":\"Journal of Visual Languages and Computing\",\"volume\":\"47 \",\"pages\":\"Pages 19-30\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.jvlc.2018.02.003\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Visual Languages and Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1045926X17301933\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Visual Languages and Computing","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1045926X17301933","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 11

摘要

最高残留限量(MRL)标准规定了不同农产品中每种农药残留的最高水平,对食品安全起着至关重要的作用。然而,这些与农药特性和农产品分类相关的标准是复杂的,并且在不同的地区或国家之间差异很大。因此,综合比较多地区的MRL标准数据是一个巨大的挑战。在本文中,我们提出了一种用于复杂层次数据的多可比视觉分析方法和一个支持MRL标准的多比较和评估的视觉分析系统(McVA)。通过协作的多视图视觉设计,我们提出的方法连接了MRL数据集的层次结构,并提供了在不同级别和维度进行比较的能力。我们还引入了一个度量模型来定量评估MRL标准的完整性和严格性。实际问题的案例研究和领域专家的积极反馈证明了这种方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Multi-comparable visual analytic approach for complex hierarchical data

Maximum residue limit (MRL) standard which specifies the highest level of every pesticide residue in different agricultural products plays a critical role in food safety. However, such standards which related to the characteristics of pesticides and the classification of agricultural products which organized into a hierarchical structure are complex and vary widely across different regions or countries. So it is a big challenge to compare multi-regional MRL standard data comprehensively. In this paper, we present a multi-comparable visual analytic approach for complex hierarchical data and a visual analytics system (McVA) to support multiple comparison and evaluation of MRL standard. With a cooperative multi-view visual design, our proposed approach links the hierarchies of MRL datasets and provides the capacity for comparison at different levels and dimensions. We also introduce a metric model for evaluating the completeness and strictness of MRL standards quantitatively. The case study of real problems and the positive feedback from domain experts demonstrate the effectiveness of this approach.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Visual Languages and Computing
Journal of Visual Languages and Computing 工程技术-计算机:软件工程
CiteScore
1.62
自引率
0.00%
发文量
0
审稿时长
26.8 weeks
期刊介绍: The Journal of Visual Languages and Computing is a forum for researchers, practitioners, and developers to exchange ideas and results for the advancement of visual languages and its implication to the art of computing. The journal publishes research papers, state-of-the-art surveys, and review articles in all aspects of visual languages.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信