{"title":"通过局部增强投影探索高维数据","authors":"Chufan Lai , Ying Zhao , Xiaoru Yuan","doi":"10.1016/j.jvlc.2018.08.006","DOIUrl":null,"url":null,"abstract":"<div><p>Dimension reduced projections approximate the high-dimensional distribution by accommodating data in a low-dimensional space. They generate good overviews, but can hardly meet the needs of local relational/dimensional data analyses. On the one hand, layout distortions in linear projections largely harm the perception of local data relationships. On the other hand, non-linear projections seek to preserve local neighborhoods but at the expense of losing dimensional contexts. A sole projection is hardly enough for local analyses with different focuses and tasks. In this paper, we propose an interactive exploration scheme to help users customize a linear projection based on their point of interests (POIs) and analytic tasks. First, users specify their POI data interactively. Then regarding different tasks, various projections and subspaces are recommended to enhance certain features of the POI. Furthermore, users can save and compare multiple POIs and navigate their explorations with a POI map. Via case studies with real-world datasets, we demonstrate the effectiveness of our method to support high-dimensional local data analyses.</p></div>","PeriodicalId":54754,"journal":{"name":"Journal of Visual Languages and Computing","volume":"48 ","pages":"Pages 144-156"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.jvlc.2018.08.006","citationCount":"4","resultStr":"{\"title\":\"Exploring high-dimensional data through locally enhanced projections\",\"authors\":\"Chufan Lai , Ying Zhao , Xiaoru Yuan\",\"doi\":\"10.1016/j.jvlc.2018.08.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Dimension reduced projections approximate the high-dimensional distribution by accommodating data in a low-dimensional space. They generate good overviews, but can hardly meet the needs of local relational/dimensional data analyses. On the one hand, layout distortions in linear projections largely harm the perception of local data relationships. On the other hand, non-linear projections seek to preserve local neighborhoods but at the expense of losing dimensional contexts. A sole projection is hardly enough for local analyses with different focuses and tasks. In this paper, we propose an interactive exploration scheme to help users customize a linear projection based on their point of interests (POIs) and analytic tasks. First, users specify their POI data interactively. Then regarding different tasks, various projections and subspaces are recommended to enhance certain features of the POI. Furthermore, users can save and compare multiple POIs and navigate their explorations with a POI map. Via case studies with real-world datasets, we demonstrate the effectiveness of our method to support high-dimensional local data analyses.</p></div>\",\"PeriodicalId\":54754,\"journal\":{\"name\":\"Journal of Visual Languages and Computing\",\"volume\":\"48 \",\"pages\":\"Pages 144-156\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.jvlc.2018.08.006\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Visual Languages and Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1045926X18301186\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Visual Languages and Computing","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1045926X18301186","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
Exploring high-dimensional data through locally enhanced projections
Dimension reduced projections approximate the high-dimensional distribution by accommodating data in a low-dimensional space. They generate good overviews, but can hardly meet the needs of local relational/dimensional data analyses. On the one hand, layout distortions in linear projections largely harm the perception of local data relationships. On the other hand, non-linear projections seek to preserve local neighborhoods but at the expense of losing dimensional contexts. A sole projection is hardly enough for local analyses with different focuses and tasks. In this paper, we propose an interactive exploration scheme to help users customize a linear projection based on their point of interests (POIs) and analytic tasks. First, users specify their POI data interactively. Then regarding different tasks, various projections and subspaces are recommended to enhance certain features of the POI. Furthermore, users can save and compare multiple POIs and navigate their explorations with a POI map. Via case studies with real-world datasets, we demonstrate the effectiveness of our method to support high-dimensional local data analyses.
期刊介绍:
The Journal of Visual Languages and Computing is a forum for researchers, practitioners, and developers to exchange ideas and results for the advancement of visual languages and its implication to the art of computing. The journal publishes research papers, state-of-the-art surveys, and review articles in all aspects of visual languages.