通过局部增强投影探索高维数据

Q3 Computer Science
Chufan Lai , Ying Zhao , Xiaoru Yuan
{"title":"通过局部增强投影探索高维数据","authors":"Chufan Lai ,&nbsp;Ying Zhao ,&nbsp;Xiaoru Yuan","doi":"10.1016/j.jvlc.2018.08.006","DOIUrl":null,"url":null,"abstract":"<div><p>Dimension reduced projections approximate the high-dimensional distribution by accommodating data in a low-dimensional space. They generate good overviews, but can hardly meet the needs of local relational/dimensional data analyses. On the one hand, layout distortions in linear projections largely harm the perception of local data relationships. On the other hand, non-linear projections seek to preserve local neighborhoods but at the expense of losing dimensional contexts. A sole projection is hardly enough for local analyses with different focuses and tasks. In this paper, we propose an interactive exploration scheme to help users customize a linear projection based on their point of interests (POIs) and analytic tasks. First, users specify their POI data interactively. Then regarding different tasks, various projections and subspaces are recommended to enhance certain features of the POI. Furthermore, users can save and compare multiple POIs and navigate their explorations with a POI map. Via case studies with real-world datasets, we demonstrate the effectiveness of our method to support high-dimensional local data analyses.</p></div>","PeriodicalId":54754,"journal":{"name":"Journal of Visual Languages and Computing","volume":"48 ","pages":"Pages 144-156"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.jvlc.2018.08.006","citationCount":"4","resultStr":"{\"title\":\"Exploring high-dimensional data through locally enhanced projections\",\"authors\":\"Chufan Lai ,&nbsp;Ying Zhao ,&nbsp;Xiaoru Yuan\",\"doi\":\"10.1016/j.jvlc.2018.08.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Dimension reduced projections approximate the high-dimensional distribution by accommodating data in a low-dimensional space. They generate good overviews, but can hardly meet the needs of local relational/dimensional data analyses. On the one hand, layout distortions in linear projections largely harm the perception of local data relationships. On the other hand, non-linear projections seek to preserve local neighborhoods but at the expense of losing dimensional contexts. A sole projection is hardly enough for local analyses with different focuses and tasks. In this paper, we propose an interactive exploration scheme to help users customize a linear projection based on their point of interests (POIs) and analytic tasks. First, users specify their POI data interactively. Then regarding different tasks, various projections and subspaces are recommended to enhance certain features of the POI. Furthermore, users can save and compare multiple POIs and navigate their explorations with a POI map. Via case studies with real-world datasets, we demonstrate the effectiveness of our method to support high-dimensional local data analyses.</p></div>\",\"PeriodicalId\":54754,\"journal\":{\"name\":\"Journal of Visual Languages and Computing\",\"volume\":\"48 \",\"pages\":\"Pages 144-156\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.jvlc.2018.08.006\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Visual Languages and Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1045926X18301186\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Visual Languages and Computing","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1045926X18301186","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 4

摘要

降维投影通过在低维空间中容纳数据来近似高维分布。它们生成了良好的概述,但很难满足本地关系/维度数据分析的需求。一方面,线性投影中的布局失真在很大程度上损害了对局部数据关系的感知。另一方面,非线性投影试图保留局部邻域,但以丢失维度上下文为代价。对于具有不同重点和任务的局部分析来说,仅仅进行一次预测是不够的。在本文中,我们提出了一种交互式探索方案,以帮助用户根据他们的兴趣点(POI)和分析任务定制线性投影。首先,用户以交互方式指定他们的POI数据。然后,关于不同的任务,推荐各种投影和子空间来增强POI的某些特征。此外,用户可以保存和比较多个POI,并使用POI地图导航他们的探索。通过对真实世界数据集的案例研究,我们证明了我们的方法支持高维局部数据分析的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exploring high-dimensional data through locally enhanced projections

Dimension reduced projections approximate the high-dimensional distribution by accommodating data in a low-dimensional space. They generate good overviews, but can hardly meet the needs of local relational/dimensional data analyses. On the one hand, layout distortions in linear projections largely harm the perception of local data relationships. On the other hand, non-linear projections seek to preserve local neighborhoods but at the expense of losing dimensional contexts. A sole projection is hardly enough for local analyses with different focuses and tasks. In this paper, we propose an interactive exploration scheme to help users customize a linear projection based on their point of interests (POIs) and analytic tasks. First, users specify their POI data interactively. Then regarding different tasks, various projections and subspaces are recommended to enhance certain features of the POI. Furthermore, users can save and compare multiple POIs and navigate their explorations with a POI map. Via case studies with real-world datasets, we demonstrate the effectiveness of our method to support high-dimensional local data analyses.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Visual Languages and Computing
Journal of Visual Languages and Computing 工程技术-计算机:软件工程
CiteScore
1.62
自引率
0.00%
发文量
0
审稿时长
26.8 weeks
期刊介绍: The Journal of Visual Languages and Computing is a forum for researchers, practitioners, and developers to exchange ideas and results for the advancement of visual languages and its implication to the art of computing. The journal publishes research papers, state-of-the-art surveys, and review articles in all aspects of visual languages.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信