相互影响和粒度

G. Armano
{"title":"相互影响和粒度","authors":"G. Armano","doi":"10.1016/1042-8143(92)90001-H","DOIUrl":null,"url":null,"abstract":"<div><p>This paper illustrates a technique for discovering mutual implications among hierarchically structured data. Such a technique may be applied to both knowledge and data bases. If the hierarchical structure makes it possible to define granularity levels, mutual implications can be evaluated at any level. Results can be quantitative (i.e. a degree in the range [0, 1]) or qualitative (i.e. a label taken from a user-defined set). If the ground data do not represent a mapping among individuals, i.e. the level of information granularity is not the highest, a local approximation based on <em>T</em>-Norms can be used. The process of implication discovery allows one to derive inference rules for expert systems and to detect default values. In addition, it might be successfully used by sophisticated machine learning algorithms.</p></div>","PeriodicalId":100857,"journal":{"name":"Knowledge Acquisition","volume":"4 4","pages":"Pages 371-386"},"PeriodicalIF":0.0000,"publicationDate":"1992-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/1042-8143(92)90001-H","citationCount":"0","resultStr":"{\"title\":\"Mutual implications and granularity\",\"authors\":\"G. Armano\",\"doi\":\"10.1016/1042-8143(92)90001-H\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper illustrates a technique for discovering mutual implications among hierarchically structured data. Such a technique may be applied to both knowledge and data bases. If the hierarchical structure makes it possible to define granularity levels, mutual implications can be evaluated at any level. Results can be quantitative (i.e. a degree in the range [0, 1]) or qualitative (i.e. a label taken from a user-defined set). If the ground data do not represent a mapping among individuals, i.e. the level of information granularity is not the highest, a local approximation based on <em>T</em>-Norms can be used. The process of implication discovery allows one to derive inference rules for expert systems and to detect default values. In addition, it might be successfully used by sophisticated machine learning algorithms.</p></div>\",\"PeriodicalId\":100857,\"journal\":{\"name\":\"Knowledge Acquisition\",\"volume\":\"4 4\",\"pages\":\"Pages 371-386\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1992-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/1042-8143(92)90001-H\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Knowledge Acquisition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/104281439290001H\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Knowledge Acquisition","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/104281439290001H","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文阐述了一种发现分层结构数据之间相互含义的技术。这种技术可以应用于知识库和数据库。如果层次结构可以定义粒度级别,那么可以在任何级别上评估相互影响。结果可以是定量的(即在[0,1]范围内的程度)或定性的(即从用户定义的集合中提取的标签)。如果地面数据不代表个体之间的映射,即信息粒度水平不是最高的,则可以使用基于T-范数的局部近似。隐含发现过程允许导出专家系统的推理规则并检测默认值。此外,它可能会被复杂的机器学习算法成功地使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mutual implications and granularity

This paper illustrates a technique for discovering mutual implications among hierarchically structured data. Such a technique may be applied to both knowledge and data bases. If the hierarchical structure makes it possible to define granularity levels, mutual implications can be evaluated at any level. Results can be quantitative (i.e. a degree in the range [0, 1]) or qualitative (i.e. a label taken from a user-defined set). If the ground data do not represent a mapping among individuals, i.e. the level of information granularity is not the highest, a local approximation based on T-Norms can be used. The process of implication discovery allows one to derive inference rules for expert systems and to detect default values. In addition, it might be successfully used by sophisticated machine learning algorithms.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信