基于维度相关性的视觉子空间聚类

Q3 Computer Science
Jiazhi Xia , Guang Jiang , YuHong Zhang , Rui Li , Wei Chen
{"title":"基于维度相关性的视觉子空间聚类","authors":"Jiazhi Xia ,&nbsp;Guang Jiang ,&nbsp;YuHong Zhang ,&nbsp;Rui Li ,&nbsp;Wei Chen","doi":"10.1016/j.jvlc.2017.05.003","DOIUrl":null,"url":null,"abstract":"<div><p>The proposed work aims at visual subspace clustering and addresses two challenges: an efficient visual subspace clustering workflow and an intuitive visual description of subspace structure. Handling the first challenge is to escape the circular dependency between detecting meaningful subspaces and discovering clusters. We propose a dimension relevance measure to indicate the cluster significance in the corresponding subspace. The dynamic dimension relevance guides the subspace exploring in our visual analysis system. To address the second challenge, we propose hyper-graph and the visualization of it to describe the structure of subspaces. Dimension overlapping between subspaces and data overlapping between clusters are clearly shown with our visual design. Experimental results demonstrate that our approach is intuitive, efficient, and robust in visual subspace clustering.</p></div>","PeriodicalId":54754,"journal":{"name":"Journal of Visual Languages and Computing","volume":"41 ","pages":"Pages 79-88"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.jvlc.2017.05.003","citationCount":"14","resultStr":"{\"title\":\"Visual subspace clustering based on dimension relevance\",\"authors\":\"Jiazhi Xia ,&nbsp;Guang Jiang ,&nbsp;YuHong Zhang ,&nbsp;Rui Li ,&nbsp;Wei Chen\",\"doi\":\"10.1016/j.jvlc.2017.05.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The proposed work aims at visual subspace clustering and addresses two challenges: an efficient visual subspace clustering workflow and an intuitive visual description of subspace structure. Handling the first challenge is to escape the circular dependency between detecting meaningful subspaces and discovering clusters. We propose a dimension relevance measure to indicate the cluster significance in the corresponding subspace. The dynamic dimension relevance guides the subspace exploring in our visual analysis system. To address the second challenge, we propose hyper-graph and the visualization of it to describe the structure of subspaces. Dimension overlapping between subspaces and data overlapping between clusters are clearly shown with our visual design. Experimental results demonstrate that our approach is intuitive, efficient, and robust in visual subspace clustering.</p></div>\",\"PeriodicalId\":54754,\"journal\":{\"name\":\"Journal of Visual Languages and Computing\",\"volume\":\"41 \",\"pages\":\"Pages 79-88\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.jvlc.2017.05.003\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Visual Languages and Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1045926X16301410\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Visual Languages and Computing","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1045926X16301410","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 14

摘要

所提出的工作针对视觉子空间聚类,并解决了两个挑战:高效的视觉子空间集群工作流程和子空间结构的直观视觉描述。处理第一个挑战是摆脱检测有意义的子空间和发现集群之间的循环依赖关系。我们提出了一个维度相关性测度来指示相应子空间中的聚类显著性。在我们的视觉分析系统中,动态维度相关性指导子空间的探索。为了解决第二个挑战,我们提出了超图及其可视化来描述子空间的结构。子空间之间的维度重叠和聚类之间的数据重叠通过我们的视觉设计清楚地显示出来。实验结果表明,该方法在视觉子空间聚类中直观、高效、稳健。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Visual subspace clustering based on dimension relevance

The proposed work aims at visual subspace clustering and addresses two challenges: an efficient visual subspace clustering workflow and an intuitive visual description of subspace structure. Handling the first challenge is to escape the circular dependency between detecting meaningful subspaces and discovering clusters. We propose a dimension relevance measure to indicate the cluster significance in the corresponding subspace. The dynamic dimension relevance guides the subspace exploring in our visual analysis system. To address the second challenge, we propose hyper-graph and the visualization of it to describe the structure of subspaces. Dimension overlapping between subspaces and data overlapping between clusters are clearly shown with our visual design. Experimental results demonstrate that our approach is intuitive, efficient, and robust in visual subspace clustering.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Visual Languages and Computing
Journal of Visual Languages and Computing 工程技术-计算机:软件工程
CiteScore
1.62
自引率
0.00%
发文量
0
审稿时长
26.8 weeks
期刊介绍: The Journal of Visual Languages and Computing is a forum for researchers, practitioners, and developers to exchange ideas and results for the advancement of visual languages and its implication to the art of computing. The journal publishes research papers, state-of-the-art surveys, and review articles in all aspects of visual languages.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信