从异构时空数据中探索人类行为的不确定性视觉分析

Q3 Computer Science
Siming Chen , Zuchao Wang , Jie Liang , Xiaoru Yuan
{"title":"从异构时空数据中探索人类行为的不确定性视觉分析","authors":"Siming Chen ,&nbsp;Zuchao Wang ,&nbsp;Jie Liang ,&nbsp;Xiaoru Yuan","doi":"10.1016/j.jvlc.2018.06.007","DOIUrl":null,"url":null,"abstract":"<div><p>When analyzing human behaviors, we need to construct the human behaviors from multiple sources of data, e.g. trajectory data, transaction data, identity data, etc. The problems we’re facing are the data conflicts, different resolution, missing and conflicting data, which together lead to the uncertainty in the spatial temporal data. Such uncertainty in data leads to difficulties and even failure in the visual analytics task for analyzing people behavior, pattern and outliers. However, traditional automatic methods can not solve the problems in such complex scenario, where the uncertain and conflicting patterns are not well-defined. To solve the problems, we proposed a semi-automatic approach, for users to solve the conflicts and identify the uncertainties. To be general, we summarized five types of uncertainties and solutions to conduct the tasks of behavior analysis. Combined with the uncertainty-aware methods, we proposed a visual analytics system to analyze human behaviors, detect patterns and find outliers. Case studies from the IEEE VAST Challenge 2014 dataset confirm the effectiveness of our approach.</p></div>","PeriodicalId":54754,"journal":{"name":"Journal of Visual Languages and Computing","volume":"48 ","pages":"Pages 187-198"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.jvlc.2018.06.007","citationCount":"7","resultStr":"{\"title\":\"Uncertainty-aware visual analytics for exploring human behaviors from heterogeneous spatial temporal data\",\"authors\":\"Siming Chen ,&nbsp;Zuchao Wang ,&nbsp;Jie Liang ,&nbsp;Xiaoru Yuan\",\"doi\":\"10.1016/j.jvlc.2018.06.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>When analyzing human behaviors, we need to construct the human behaviors from multiple sources of data, e.g. trajectory data, transaction data, identity data, etc. The problems we’re facing are the data conflicts, different resolution, missing and conflicting data, which together lead to the uncertainty in the spatial temporal data. Such uncertainty in data leads to difficulties and even failure in the visual analytics task for analyzing people behavior, pattern and outliers. However, traditional automatic methods can not solve the problems in such complex scenario, where the uncertain and conflicting patterns are not well-defined. To solve the problems, we proposed a semi-automatic approach, for users to solve the conflicts and identify the uncertainties. To be general, we summarized five types of uncertainties and solutions to conduct the tasks of behavior analysis. Combined with the uncertainty-aware methods, we proposed a visual analytics system to analyze human behaviors, detect patterns and find outliers. Case studies from the IEEE VAST Challenge 2014 dataset confirm the effectiveness of our approach.</p></div>\",\"PeriodicalId\":54754,\"journal\":{\"name\":\"Journal of Visual Languages and Computing\",\"volume\":\"48 \",\"pages\":\"Pages 187-198\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.jvlc.2018.06.007\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Visual Languages and Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1045926X1630163X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Visual Languages and Computing","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1045926X1630163X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 7

摘要

在分析人类行为时,我们需要从多个数据来源构建人类行为,如轨迹数据、交易数据、身份数据等。我们面临的问题是数据冲突、分辨率不同、数据缺失和冲突,这些共同导致了时空数据的不确定性。数据中的这种不确定性导致了分析人们行为、模式和异常值的视觉分析任务的困难甚至失败。然而,传统的自动方法无法解决这种复杂场景中的问题,因为在这种场景中,不确定和冲突的模式没有明确定义。为了解决这些问题,我们提出了一种半自动的方法,供用户解决冲突并识别不确定性。总的来说,我们总结了五种类型的不确定性和解决方案来进行行为分析的任务。结合不确定性感知方法,我们提出了一个视觉分析系统来分析人类行为、检测模式和发现异常值。IEEE VAST Challenge 2014数据集的案例研究证实了我们方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Uncertainty-aware visual analytics for exploring human behaviors from heterogeneous spatial temporal data

When analyzing human behaviors, we need to construct the human behaviors from multiple sources of data, e.g. trajectory data, transaction data, identity data, etc. The problems we’re facing are the data conflicts, different resolution, missing and conflicting data, which together lead to the uncertainty in the spatial temporal data. Such uncertainty in data leads to difficulties and even failure in the visual analytics task for analyzing people behavior, pattern and outliers. However, traditional automatic methods can not solve the problems in such complex scenario, where the uncertain and conflicting patterns are not well-defined. To solve the problems, we proposed a semi-automatic approach, for users to solve the conflicts and identify the uncertainties. To be general, we summarized five types of uncertainties and solutions to conduct the tasks of behavior analysis. Combined with the uncertainty-aware methods, we proposed a visual analytics system to analyze human behaviors, detect patterns and find outliers. Case studies from the IEEE VAST Challenge 2014 dataset confirm the effectiveness of our approach.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Visual Languages and Computing
Journal of Visual Languages and Computing 工程技术-计算机:软件工程
CiteScore
1.62
自引率
0.00%
发文量
0
审稿时长
26.8 weeks
期刊介绍: The Journal of Visual Languages and Computing is a forum for researchers, practitioners, and developers to exchange ideas and results for the advancement of visual languages and its implication to the art of computing. The journal publishes research papers, state-of-the-art surveys, and review articles in all aspects of visual languages.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信