Siming Chen , Zuchao Wang , Jie Liang , Xiaoru Yuan
{"title":"从异构时空数据中探索人类行为的不确定性视觉分析","authors":"Siming Chen , Zuchao Wang , Jie Liang , Xiaoru Yuan","doi":"10.1016/j.jvlc.2018.06.007","DOIUrl":null,"url":null,"abstract":"<div><p>When analyzing human behaviors, we need to construct the human behaviors from multiple sources of data, e.g. trajectory data, transaction data, identity data, etc. The problems we’re facing are the data conflicts, different resolution, missing and conflicting data, which together lead to the uncertainty in the spatial temporal data. Such uncertainty in data leads to difficulties and even failure in the visual analytics task for analyzing people behavior, pattern and outliers. However, traditional automatic methods can not solve the problems in such complex scenario, where the uncertain and conflicting patterns are not well-defined. To solve the problems, we proposed a semi-automatic approach, for users to solve the conflicts and identify the uncertainties. To be general, we summarized five types of uncertainties and solutions to conduct the tasks of behavior analysis. Combined with the uncertainty-aware methods, we proposed a visual analytics system to analyze human behaviors, detect patterns and find outliers. Case studies from the IEEE VAST Challenge 2014 dataset confirm the effectiveness of our approach.</p></div>","PeriodicalId":54754,"journal":{"name":"Journal of Visual Languages and Computing","volume":"48 ","pages":"Pages 187-198"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.jvlc.2018.06.007","citationCount":"7","resultStr":"{\"title\":\"Uncertainty-aware visual analytics for exploring human behaviors from heterogeneous spatial temporal data\",\"authors\":\"Siming Chen , Zuchao Wang , Jie Liang , Xiaoru Yuan\",\"doi\":\"10.1016/j.jvlc.2018.06.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>When analyzing human behaviors, we need to construct the human behaviors from multiple sources of data, e.g. trajectory data, transaction data, identity data, etc. The problems we’re facing are the data conflicts, different resolution, missing and conflicting data, which together lead to the uncertainty in the spatial temporal data. Such uncertainty in data leads to difficulties and even failure in the visual analytics task for analyzing people behavior, pattern and outliers. However, traditional automatic methods can not solve the problems in such complex scenario, where the uncertain and conflicting patterns are not well-defined. To solve the problems, we proposed a semi-automatic approach, for users to solve the conflicts and identify the uncertainties. To be general, we summarized five types of uncertainties and solutions to conduct the tasks of behavior analysis. Combined with the uncertainty-aware methods, we proposed a visual analytics system to analyze human behaviors, detect patterns and find outliers. Case studies from the IEEE VAST Challenge 2014 dataset confirm the effectiveness of our approach.</p></div>\",\"PeriodicalId\":54754,\"journal\":{\"name\":\"Journal of Visual Languages and Computing\",\"volume\":\"48 \",\"pages\":\"Pages 187-198\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.jvlc.2018.06.007\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Visual Languages and Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1045926X1630163X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Visual Languages and Computing","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1045926X1630163X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
Uncertainty-aware visual analytics for exploring human behaviors from heterogeneous spatial temporal data
When analyzing human behaviors, we need to construct the human behaviors from multiple sources of data, e.g. trajectory data, transaction data, identity data, etc. The problems we’re facing are the data conflicts, different resolution, missing and conflicting data, which together lead to the uncertainty in the spatial temporal data. Such uncertainty in data leads to difficulties and even failure in the visual analytics task for analyzing people behavior, pattern and outliers. However, traditional automatic methods can not solve the problems in such complex scenario, where the uncertain and conflicting patterns are not well-defined. To solve the problems, we proposed a semi-automatic approach, for users to solve the conflicts and identify the uncertainties. To be general, we summarized five types of uncertainties and solutions to conduct the tasks of behavior analysis. Combined with the uncertainty-aware methods, we proposed a visual analytics system to analyze human behaviors, detect patterns and find outliers. Case studies from the IEEE VAST Challenge 2014 dataset confirm the effectiveness of our approach.
期刊介绍:
The Journal of Visual Languages and Computing is a forum for researchers, practitioners, and developers to exchange ideas and results for the advancement of visual languages and its implication to the art of computing. The journal publishes research papers, state-of-the-art surveys, and review articles in all aspects of visual languages.