{"title":"用于实时运动捕捉的数据驱动人体模型估计","authors":"Le Su , Lianjun Liao , Wenpeng Zhai , Shihong Xia","doi":"10.1016/j.jvlc.2018.05.001","DOIUrl":null,"url":null,"abstract":"<div><p><span>In this paper, we present a practicable method to estimate individual 3D human model in a low cost multi-view realtime 3D human motion capture system. The key idea is: using human </span>geometric model<span> database and human motion database to establish geometric priors and pose prior model; when given the geometric prior, pose prior and a standard template geometry model, the individual human body model and its embedded skeleton can be estimated from the 3D point cloud captured from multiple depth cameras. Because of the introduction of the global prior model of body pose and shapes into a unified nonlinear optimization problem, the accuracy of geometric model estimation is significantly improved. The experiments on the synthesized data set with noise or without noise and the real data set captured from multiple depth cameras show that the estimation results of our method are more reasonable and accurate than the classical methods, and our method is better noise-immunity. The proposed new individual 3D geometric model estimation method is suitable for online realtime human motion tracking system.</span></p></div>","PeriodicalId":54754,"journal":{"name":"Journal of Visual Languages and Computing","volume":"48 ","pages":"Pages 10-18"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.jvlc.2018.05.001","citationCount":"4","resultStr":"{\"title\":\"Data-driven human model estimation for realtime motion capture\",\"authors\":\"Le Su , Lianjun Liao , Wenpeng Zhai , Shihong Xia\",\"doi\":\"10.1016/j.jvlc.2018.05.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>In this paper, we present a practicable method to estimate individual 3D human model in a low cost multi-view realtime 3D human motion capture system. The key idea is: using human </span>geometric model<span> database and human motion database to establish geometric priors and pose prior model; when given the geometric prior, pose prior and a standard template geometry model, the individual human body model and its embedded skeleton can be estimated from the 3D point cloud captured from multiple depth cameras. Because of the introduction of the global prior model of body pose and shapes into a unified nonlinear optimization problem, the accuracy of geometric model estimation is significantly improved. The experiments on the synthesized data set with noise or without noise and the real data set captured from multiple depth cameras show that the estimation results of our method are more reasonable and accurate than the classical methods, and our method is better noise-immunity. The proposed new individual 3D geometric model estimation method is suitable for online realtime human motion tracking system.</span></p></div>\",\"PeriodicalId\":54754,\"journal\":{\"name\":\"Journal of Visual Languages and Computing\",\"volume\":\"48 \",\"pages\":\"Pages 10-18\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.jvlc.2018.05.001\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Visual Languages and Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1045926X17302781\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Visual Languages and Computing","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1045926X17302781","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
Data-driven human model estimation for realtime motion capture
In this paper, we present a practicable method to estimate individual 3D human model in a low cost multi-view realtime 3D human motion capture system. The key idea is: using human geometric model database and human motion database to establish geometric priors and pose prior model; when given the geometric prior, pose prior and a standard template geometry model, the individual human body model and its embedded skeleton can be estimated from the 3D point cloud captured from multiple depth cameras. Because of the introduction of the global prior model of body pose and shapes into a unified nonlinear optimization problem, the accuracy of geometric model estimation is significantly improved. The experiments on the synthesized data set with noise or without noise and the real data set captured from multiple depth cameras show that the estimation results of our method are more reasonable and accurate than the classical methods, and our method is better noise-immunity. The proposed new individual 3D geometric model estimation method is suitable for online realtime human motion tracking system.
期刊介绍:
The Journal of Visual Languages and Computing is a forum for researchers, practitioners, and developers to exchange ideas and results for the advancement of visual languages and its implication to the art of computing. The journal publishes research papers, state-of-the-art surveys, and review articles in all aspects of visual languages.