使用生物指示剂检测灭菌过程中的过热蒸汽。

Q4 Medicine
Brian Kirk, Paulo Laranjeira
{"title":"使用生物指示剂检测灭菌过程中的过热蒸汽。","authors":"Brian Kirk, Paulo Laranjeira","doi":"10.2345/0899-8205-57.4.106","DOIUrl":null,"url":null,"abstract":"<p><p>Saturated steam (SS) is used for sterilizing many medical devices. Exposure to SS for appropriate temperature/time combinations creates a microbicidal environment that renders product sterile. Superheated steam (SHS) has been heated beyond its saturation point and is less microbicidal, compromising process efficacy. Sterilization monitoring systems should detect SHS. One method is to use biological indicators (BIs; e.g., rapid-readout self-contained BIs [RRSCBIs]). The purpose of this study was to determine if RRSCBIs can detect SHS. Pressurizing the boiler to 4,700 mB, manifold to 4,000 mB, and chamber jacket to 3,600 mB and heating the viewing window to 150°C in a 10-L BI evaluation resistometer vessel allowed approximately 12°C and 4.5°C of superheat in a nominal 121.75 ± 0.25°C and 132.5 ± 0.25°C cycle, respectively, to be reproducibly achieved. Replicate tests using multiple RRSCBIs from different batches were exposed vertically (cap up), inverted (cap down), and horizontally to SS and SHS. RRSCBI viability was determined using a fluorescent readout method. RRSCBIs exposed to SS at 121.75 ± 0.25°C for 7 or 14 minutes were negative. A total of 135 type A RRSCBIs were exposed to SHS (12°C) at 121.75 ± 0.25°C for 14 minutes. Zero of 45 RRSCBIs mounted vertically showed a positive fluorescent result, 26 of 45 mounted inverted were positive, and 45 of 45 mounted horizontally were positive. A total of 135 type B RRSCBIs were exposed to SHS (12°C) at 121.75 ± 0.25°C for 7 minutes. Twenty-four of 45 mounted vertically were positive, 41 of 45 mounted inverted were positive, and 45 of 45 mounted horizontally were positive. RRSCBIs detected SHS, but this was orientation dependent. Further work is required to establish the application of these findings in healthcare facility settings.</p>","PeriodicalId":35656,"journal":{"name":"Biomedical Instrumentation and Technology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10634659/pdf/","citationCount":"0","resultStr":"{\"title\":\"Detection of Superheated Steam during Sterilization Using Biological Indicators.\",\"authors\":\"Brian Kirk, Paulo Laranjeira\",\"doi\":\"10.2345/0899-8205-57.4.106\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Saturated steam (SS) is used for sterilizing many medical devices. Exposure to SS for appropriate temperature/time combinations creates a microbicidal environment that renders product sterile. Superheated steam (SHS) has been heated beyond its saturation point and is less microbicidal, compromising process efficacy. Sterilization monitoring systems should detect SHS. One method is to use biological indicators (BIs; e.g., rapid-readout self-contained BIs [RRSCBIs]). The purpose of this study was to determine if RRSCBIs can detect SHS. Pressurizing the boiler to 4,700 mB, manifold to 4,000 mB, and chamber jacket to 3,600 mB and heating the viewing window to 150°C in a 10-L BI evaluation resistometer vessel allowed approximately 12°C and 4.5°C of superheat in a nominal 121.75 ± 0.25°C and 132.5 ± 0.25°C cycle, respectively, to be reproducibly achieved. Replicate tests using multiple RRSCBIs from different batches were exposed vertically (cap up), inverted (cap down), and horizontally to SS and SHS. RRSCBI viability was determined using a fluorescent readout method. RRSCBIs exposed to SS at 121.75 ± 0.25°C for 7 or 14 minutes were negative. A total of 135 type A RRSCBIs were exposed to SHS (12°C) at 121.75 ± 0.25°C for 14 minutes. Zero of 45 RRSCBIs mounted vertically showed a positive fluorescent result, 26 of 45 mounted inverted were positive, and 45 of 45 mounted horizontally were positive. A total of 135 type B RRSCBIs were exposed to SHS (12°C) at 121.75 ± 0.25°C for 7 minutes. Twenty-four of 45 mounted vertically were positive, 41 of 45 mounted inverted were positive, and 45 of 45 mounted horizontally were positive. RRSCBIs detected SHS, but this was orientation dependent. Further work is required to establish the application of these findings in healthcare facility settings.</p>\",\"PeriodicalId\":35656,\"journal\":{\"name\":\"Biomedical Instrumentation and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10634659/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical Instrumentation and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2345/0899-8205-57.4.106\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/11/9 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Instrumentation and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2345/0899-8205-57.4.106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/9 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

摘要

饱和蒸汽(SS)用于对许多医疗设备进行消毒。在适当的温度/时间组合下暴露于SS会产生杀菌环境,使产品无菌。过热蒸汽(SHS)已经加热到饱和点以上,杀菌能力较弱,影响了工艺效果。灭菌监测系统应检测SHS。一种方法是使用生物指示剂(BI;例如,快速读出的独立BI[RRSCBI])。本研究的目的是确定RRSCBIs是否能检测SHS。在10-L BI评估电阻计容器中,将锅炉加压至4700 mB,歧管加压至4000 mB,室夹套加压至3600 mB,并将观察窗加热至150°C,可在标称121.75±0.25°C和132.5±0.25°C.循环中分别获得约12°C和4.5°C的过热。使用来自不同批次的多个RRSCBI的重复测试垂直(向上)、倒置(向下)和水平暴露于SS和SHS。使用荧光读出法测定RRSCBI的活力。暴露于121.75±0.25°C的SS 7或14分钟的RRSCBI呈阴性。共有135个A型RRSCBI暴露于121.75±0.25°C的SHS(12°C)中14分钟。垂直安装的45个RRSCB中有0个显示阳性荧光结果,倒置安装的45个中有26个为阳性,水平安装的45中有45个为阳性。共有135个B型RRSCBI暴露于121.75±0.25°C的SHS(12°C)中7分钟。垂直安装的45个中有24个为阳性,倒置安装的45中有41个为阳性;水平安装的45个中有45个为阳性。RRSCBI检测到SHS,但这与方位有关。需要进一步的工作来确定这些发现在医疗机构环境中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Detection of Superheated Steam during Sterilization Using Biological Indicators.

Saturated steam (SS) is used for sterilizing many medical devices. Exposure to SS for appropriate temperature/time combinations creates a microbicidal environment that renders product sterile. Superheated steam (SHS) has been heated beyond its saturation point and is less microbicidal, compromising process efficacy. Sterilization monitoring systems should detect SHS. One method is to use biological indicators (BIs; e.g., rapid-readout self-contained BIs [RRSCBIs]). The purpose of this study was to determine if RRSCBIs can detect SHS. Pressurizing the boiler to 4,700 mB, manifold to 4,000 mB, and chamber jacket to 3,600 mB and heating the viewing window to 150°C in a 10-L BI evaluation resistometer vessel allowed approximately 12°C and 4.5°C of superheat in a nominal 121.75 ± 0.25°C and 132.5 ± 0.25°C cycle, respectively, to be reproducibly achieved. Replicate tests using multiple RRSCBIs from different batches were exposed vertically (cap up), inverted (cap down), and horizontally to SS and SHS. RRSCBI viability was determined using a fluorescent readout method. RRSCBIs exposed to SS at 121.75 ± 0.25°C for 7 or 14 minutes were negative. A total of 135 type A RRSCBIs were exposed to SHS (12°C) at 121.75 ± 0.25°C for 14 minutes. Zero of 45 RRSCBIs mounted vertically showed a positive fluorescent result, 26 of 45 mounted inverted were positive, and 45 of 45 mounted horizontally were positive. A total of 135 type B RRSCBIs were exposed to SHS (12°C) at 121.75 ± 0.25°C for 7 minutes. Twenty-four of 45 mounted vertically were positive, 41 of 45 mounted inverted were positive, and 45 of 45 mounted horizontally were positive. RRSCBIs detected SHS, but this was orientation dependent. Further work is required to establish the application of these findings in healthcare facility settings.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomedical Instrumentation and Technology
Biomedical Instrumentation and Technology Computer Science-Computer Networks and Communications
CiteScore
1.10
自引率
0.00%
发文量
16
期刊介绍: AAMI publishes Biomedical Instrumentation & Technology (BI&T) a bi-monthly peer-reviewed journal dedicated to the developers, managers, and users of medical instrumentation and technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信