Hyunkyung Mo, Juryun Kim, Jennifer Yejean Kim, Jang Woon Kim, Heeju Han, Si Hwa Choi, Yeri Alice Rim, Ji Hyeon Ju
{"title":"鼻内给药诱导多能干细胞衍生的皮层神经干细胞分泌组作为阿尔茨海默病的治疗选择。","authors":"Hyunkyung Mo, Juryun Kim, Jennifer Yejean Kim, Jang Woon Kim, Heeju Han, Si Hwa Choi, Yeri Alice Rim, Ji Hyeon Ju","doi":"10.1186/s40035-023-00384-8","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Alzheimer's disease (AD) is the most common neurodegenerative disorder in the elderly, resulting in gradual destruction of cognitive abilities. Research on the development of various AD treatments is underway; however, no definitive treatment has been developed yet. Herein, we present induced pluripotent stem cell (iPSC)-derived cortical neural stem cell secretome (CNSC-SE) as a new treatment candidate for AD and explore its efficacy.</p><p><strong>Methods: </strong>We first assessed the effects of CNSC-SE treatment on neural maturation and electromagnetic signal during cortical nerve cell differentiation. Then to confirm the efficacy in vivo, CNSC-SE was administered to the 5×FAD mouse model through the nasal cavity (5 μg/g, once a week, 4 weeks). The cell-mediated effects on nerve recovery, amyloid beta (Aβ) plaque aggregation, microglial and astrocyte detection in the brain, and neuroinflammatory responses were investigated. Metabolomics analysis of iPSC-derived CNSC-SE revealed that it contained components that could exert neuro-protective effects or amplify cognitive restorative effects.</p><p><strong>Results: </strong>Human iPSC-derived CNSC-SE increased neuronal proliferation and dendritic structure formation in vitro. Furthermore, CNSC-SE-treated iPSC-derived cortical neurons acquired electrical network activity and action potential bursts. The 5×FAD mice treated with CNSC-SE showed memory restoration and reduced Aβ plaque accumulation.</p><p><strong>Conclusions: </strong>Our findings suggest that the iPSC-derived CNSC-SE may serve as a potential, non-invasive therapeutic option for AD in reducing amyloid infiltration and restoring memory.</p>","PeriodicalId":23269,"journal":{"name":"Translational Neurodegeneration","volume":"12 1","pages":"50"},"PeriodicalIF":10.8000,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10634159/pdf/","citationCount":"0","resultStr":"{\"title\":\"Intranasal administration of induced pluripotent stem cell-derived cortical neural stem cell-secretome as a treatment option for Alzheimer's disease.\",\"authors\":\"Hyunkyung Mo, Juryun Kim, Jennifer Yejean Kim, Jang Woon Kim, Heeju Han, Si Hwa Choi, Yeri Alice Rim, Ji Hyeon Ju\",\"doi\":\"10.1186/s40035-023-00384-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Alzheimer's disease (AD) is the most common neurodegenerative disorder in the elderly, resulting in gradual destruction of cognitive abilities. Research on the development of various AD treatments is underway; however, no definitive treatment has been developed yet. Herein, we present induced pluripotent stem cell (iPSC)-derived cortical neural stem cell secretome (CNSC-SE) as a new treatment candidate for AD and explore its efficacy.</p><p><strong>Methods: </strong>We first assessed the effects of CNSC-SE treatment on neural maturation and electromagnetic signal during cortical nerve cell differentiation. Then to confirm the efficacy in vivo, CNSC-SE was administered to the 5×FAD mouse model through the nasal cavity (5 μg/g, once a week, 4 weeks). The cell-mediated effects on nerve recovery, amyloid beta (Aβ) plaque aggregation, microglial and astrocyte detection in the brain, and neuroinflammatory responses were investigated. Metabolomics analysis of iPSC-derived CNSC-SE revealed that it contained components that could exert neuro-protective effects or amplify cognitive restorative effects.</p><p><strong>Results: </strong>Human iPSC-derived CNSC-SE increased neuronal proliferation and dendritic structure formation in vitro. Furthermore, CNSC-SE-treated iPSC-derived cortical neurons acquired electrical network activity and action potential bursts. The 5×FAD mice treated with CNSC-SE showed memory restoration and reduced Aβ plaque accumulation.</p><p><strong>Conclusions: </strong>Our findings suggest that the iPSC-derived CNSC-SE may serve as a potential, non-invasive therapeutic option for AD in reducing amyloid infiltration and restoring memory.</p>\",\"PeriodicalId\":23269,\"journal\":{\"name\":\"Translational Neurodegeneration\",\"volume\":\"12 1\",\"pages\":\"50\"},\"PeriodicalIF\":10.8000,\"publicationDate\":\"2023-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10634159/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Translational Neurodegeneration\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s40035-023-00384-8\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Translational Neurodegeneration","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40035-023-00384-8","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Intranasal administration of induced pluripotent stem cell-derived cortical neural stem cell-secretome as a treatment option for Alzheimer's disease.
Background: Alzheimer's disease (AD) is the most common neurodegenerative disorder in the elderly, resulting in gradual destruction of cognitive abilities. Research on the development of various AD treatments is underway; however, no definitive treatment has been developed yet. Herein, we present induced pluripotent stem cell (iPSC)-derived cortical neural stem cell secretome (CNSC-SE) as a new treatment candidate for AD and explore its efficacy.
Methods: We first assessed the effects of CNSC-SE treatment on neural maturation and electromagnetic signal during cortical nerve cell differentiation. Then to confirm the efficacy in vivo, CNSC-SE was administered to the 5×FAD mouse model through the nasal cavity (5 μg/g, once a week, 4 weeks). The cell-mediated effects on nerve recovery, amyloid beta (Aβ) plaque aggregation, microglial and astrocyte detection in the brain, and neuroinflammatory responses were investigated. Metabolomics analysis of iPSC-derived CNSC-SE revealed that it contained components that could exert neuro-protective effects or amplify cognitive restorative effects.
Results: Human iPSC-derived CNSC-SE increased neuronal proliferation and dendritic structure formation in vitro. Furthermore, CNSC-SE-treated iPSC-derived cortical neurons acquired electrical network activity and action potential bursts. The 5×FAD mice treated with CNSC-SE showed memory restoration and reduced Aβ plaque accumulation.
Conclusions: Our findings suggest that the iPSC-derived CNSC-SE may serve as a potential, non-invasive therapeutic option for AD in reducing amyloid infiltration and restoring memory.
期刊介绍:
Translational Neurodegeneration, an open-access, peer-reviewed journal, addresses all aspects of neurodegenerative diseases. It serves as a prominent platform for research, therapeutics, and education, fostering discussions and insights across basic, translational, and clinical research domains. Covering Parkinson's disease, Alzheimer's disease, and other neurodegenerative conditions, it welcomes contributions on epidemiology, pathogenesis, diagnosis, prevention, drug development, rehabilitation, and drug delivery. Scientists, clinicians, and physician-scientists are encouraged to share their work in this specialized journal tailored to their fields.