Guilherme Gonzaga da Silva , Vinicius Marques Lopez , Ana Carolina Vilarinho , Felipe H. Datto-Liberato , Carlo José Freire Oliveira , Robert Poulin , Rhainer Guillermo-Ferreira
{"title":"病媒物种丰富度可预测当地恰加斯病的死亡率。","authors":"Guilherme Gonzaga da Silva , Vinicius Marques Lopez , Ana Carolina Vilarinho , Felipe H. Datto-Liberato , Carlo José Freire Oliveira , Robert Poulin , Rhainer Guillermo-Ferreira","doi":"10.1016/j.ijpara.2023.10.002","DOIUrl":null,"url":null,"abstract":"<div><p>Vector species richness may drive the prevalence of vector-borne diseases by influencing pathogen transmission rates. The dilution effect hypothesis predicts that higher biodiversity reduces disease prevalence, but with inconclusive evidence. In contrast, the amplification effect hypothesis suggests that higher vector diversity may result in greater disease transmission by increasing and diversifying the transmission pathways. The relationship between vector diversity and pathogen transmission remains unclear and requires further study. Chagas disease<span> is a vector-borne disease most prevalent in Brazil and transmitted by multiple species of insect vectors of the subfamily Triatominae, yet the drivers of spatial variation in its impact on human populations remain unresolved. We tested whether triatomine species richness, latitude, bioclimatic variables, human host population density, and socioeconomic variables predict Chagas disease mortality rates across over 5000 spatial grid cells covering all of Brazil. Results show that species richness of triatomine vectors is a good predictor of mortality rates caused by Chagas disease, which supports the amplification effect hypothesis. Vector richness and the impact of Chagas disease may also be driven by latitudinal components of climate and human socioeconomic factors. We provide evidence that vector diversity is a strong predictor of disease prevalence and give support to the amplification effect hypothesis.</span></p></div>","PeriodicalId":13725,"journal":{"name":"International journal for parasitology","volume":"54 3","pages":"Pages 139-145"},"PeriodicalIF":3.7000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Vector species richness predicts local mortality rates from Chagas disease\",\"authors\":\"Guilherme Gonzaga da Silva , Vinicius Marques Lopez , Ana Carolina Vilarinho , Felipe H. Datto-Liberato , Carlo José Freire Oliveira , Robert Poulin , Rhainer Guillermo-Ferreira\",\"doi\":\"10.1016/j.ijpara.2023.10.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Vector species richness may drive the prevalence of vector-borne diseases by influencing pathogen transmission rates. The dilution effect hypothesis predicts that higher biodiversity reduces disease prevalence, but with inconclusive evidence. In contrast, the amplification effect hypothesis suggests that higher vector diversity may result in greater disease transmission by increasing and diversifying the transmission pathways. The relationship between vector diversity and pathogen transmission remains unclear and requires further study. Chagas disease<span> is a vector-borne disease most prevalent in Brazil and transmitted by multiple species of insect vectors of the subfamily Triatominae, yet the drivers of spatial variation in its impact on human populations remain unresolved. We tested whether triatomine species richness, latitude, bioclimatic variables, human host population density, and socioeconomic variables predict Chagas disease mortality rates across over 5000 spatial grid cells covering all of Brazil. Results show that species richness of triatomine vectors is a good predictor of mortality rates caused by Chagas disease, which supports the amplification effect hypothesis. Vector richness and the impact of Chagas disease may also be driven by latitudinal components of climate and human socioeconomic factors. We provide evidence that vector diversity is a strong predictor of disease prevalence and give support to the amplification effect hypothesis.</span></p></div>\",\"PeriodicalId\":13725,\"journal\":{\"name\":\"International journal for parasitology\",\"volume\":\"54 3\",\"pages\":\"Pages 139-145\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal for parasitology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0020751923002059\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PARASITOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal for parasitology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020751923002059","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PARASITOLOGY","Score":null,"Total":0}
Vector species richness predicts local mortality rates from Chagas disease
Vector species richness may drive the prevalence of vector-borne diseases by influencing pathogen transmission rates. The dilution effect hypothesis predicts that higher biodiversity reduces disease prevalence, but with inconclusive evidence. In contrast, the amplification effect hypothesis suggests that higher vector diversity may result in greater disease transmission by increasing and diversifying the transmission pathways. The relationship between vector diversity and pathogen transmission remains unclear and requires further study. Chagas disease is a vector-borne disease most prevalent in Brazil and transmitted by multiple species of insect vectors of the subfamily Triatominae, yet the drivers of spatial variation in its impact on human populations remain unresolved. We tested whether triatomine species richness, latitude, bioclimatic variables, human host population density, and socioeconomic variables predict Chagas disease mortality rates across over 5000 spatial grid cells covering all of Brazil. Results show that species richness of triatomine vectors is a good predictor of mortality rates caused by Chagas disease, which supports the amplification effect hypothesis. Vector richness and the impact of Chagas disease may also be driven by latitudinal components of climate and human socioeconomic factors. We provide evidence that vector diversity is a strong predictor of disease prevalence and give support to the amplification effect hypothesis.
期刊介绍:
International Journal for Parasitology offers authors the option to sponsor nonsubscriber access to their articles on Elsevier electronic publishing platforms. For more information please view our Sponsored Articles page. The International Journal for Parasitology publishes the results of original research in all aspects of basic and applied parasitology, including all the fields covered by its Specialist Editors, and ranging from parasites and host-parasite relationships of intrinsic biological interest to those of social and economic importance in human and veterinary medicine and agriculture.