{"title":"基于排列的差分相关分析的局限性。","authors":"Hoseung Song, Michael C. Wu","doi":"10.1002/gepi.22540","DOIUrl":null,"url":null,"abstract":"<p>The comparison of biological systems, through the analysis of molecular changes under different conditions, has played a crucial role in the progress of modern biological science. Specifically, differential correlation analysis (DCA) has been employed to determine whether relationships between genomic features differ across conditions or outcomes. Because ascertaining the null distribution of test statistics to capture variations in correlation is challenging, several DCA methods utilize permutation which can loosen parametric (e.g., normality) assumptions. However, permutation is often problematic for DCA due to violating the assumption that samples are exchangeable under the null. Here, we examine the limitations of permutation-based DCA and investigate instances where the permutation-based DCA exhibits poor performance. Experimental results show that the permutation-based DCA often fails to control the type I error under the null hypothesis of equal correlation structures.</p>","PeriodicalId":12710,"journal":{"name":"Genetic Epidemiology","volume":"47 8","pages":"637-641"},"PeriodicalIF":1.7000,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Limitation of permutation-based differential correlation analysis\",\"authors\":\"Hoseung Song, Michael C. Wu\",\"doi\":\"10.1002/gepi.22540\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The comparison of biological systems, through the analysis of molecular changes under different conditions, has played a crucial role in the progress of modern biological science. Specifically, differential correlation analysis (DCA) has been employed to determine whether relationships between genomic features differ across conditions or outcomes. Because ascertaining the null distribution of test statistics to capture variations in correlation is challenging, several DCA methods utilize permutation which can loosen parametric (e.g., normality) assumptions. However, permutation is often problematic for DCA due to violating the assumption that samples are exchangeable under the null. Here, we examine the limitations of permutation-based DCA and investigate instances where the permutation-based DCA exhibits poor performance. Experimental results show that the permutation-based DCA often fails to control the type I error under the null hypothesis of equal correlation structures.</p>\",\"PeriodicalId\":12710,\"journal\":{\"name\":\"Genetic Epidemiology\",\"volume\":\"47 8\",\"pages\":\"637-641\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genetic Epidemiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/gepi.22540\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genetic Epidemiology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/gepi.22540","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Limitation of permutation-based differential correlation analysis
The comparison of biological systems, through the analysis of molecular changes under different conditions, has played a crucial role in the progress of modern biological science. Specifically, differential correlation analysis (DCA) has been employed to determine whether relationships between genomic features differ across conditions or outcomes. Because ascertaining the null distribution of test statistics to capture variations in correlation is challenging, several DCA methods utilize permutation which can loosen parametric (e.g., normality) assumptions. However, permutation is often problematic for DCA due to violating the assumption that samples are exchangeable under the null. Here, we examine the limitations of permutation-based DCA and investigate instances where the permutation-based DCA exhibits poor performance. Experimental results show that the permutation-based DCA often fails to control the type I error under the null hypothesis of equal correlation structures.
期刊介绍:
Genetic Epidemiology is a peer-reviewed journal for discussion of research on the genetic causes of the distribution of human traits in families and populations. Emphasis is placed on the relative contribution of genetic and environmental factors to human disease as revealed by genetic, epidemiological, and biologic investigations.
Genetic Epidemiology primarily publishes papers in statistical genetics, a research field that is primarily concerned with development of statistical, bioinformatical, and computational models for analyzing genetic data. Incorporation of underlying biology and population genetics into conceptual models is favored. The Journal seeks original articles comprising either applied research or innovative statistical, mathematical, computational, or genomic methodologies that advance studies in genetic epidemiology. Other types of reports are encouraged, such as letters to the editor, topic reviews, and perspectives from other fields of research that will likely enrich the field of genetic epidemiology.