{"title":"基于机器学习的胰十二指肠切除术后胰瘘预测。","authors":"Arjun Verma, Jeffrey Balian, Joseph Hadaya, Alykhan Premji, Takayuki Shimizu, Timothy Donahue, Peyman Benharash","doi":"10.1097/SLA.0000000000006123","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>The aim of this study was to develop a novel machine learning model to predict clinically relevant postoperative pancreatic fistula (CR-POPF) following pancreaticoduodenectomy (PD).</p><p><strong>Background: </strong>Accurate prognostication of CR-POPF may allow for risk stratification and adaptive treatment strategies for potential PD candidates. However, antecedent models, such as the modified Fistula Risk Score (mFRS), are limited by poor discrimination and calibration.</p><p><strong>Methods: </strong>All records entailing PD within the 2014 to 2018 American College of Surgeons National Surgical Quality Improvement Program (ACS NSQIP) were identified. In addition, patients undergoing PD at our institution between 2013 and 2021 were queried from our local data repository. An eXtreme Gradient Boosting (XGBoost) model was developed to estimate the risk of CR-POPF using data from the ACS NSQIP and evaluated using institutional data. Model discrimination was estimated using the area under the receiver operating characteristic (AUROC) and area under the precision recall curve (AUPRC).</p><p><strong>Results: </strong>Overall, 12,281 and 445 patients undergoing PD were identified within the 2014 to 2018 ACS NSQIP and our institutional registry, respectively. Application of the XGBoost and mFRS scores to the internal validation dataset revealed that the former model had significantly greater AUROC (0.72 vs 0.68, P <0.001) and AUPRC (0.22 vs 0.18, P <0.001). Within the external validation dataset, the XGBoost model remained superior to the mFRS with an AUROC of 0.79 (95% CI: 0.74-0.84) versus 0.75 (95% CI: 0.70-0.80, P <0.001). In addition, AUPRC was higher for the XGBoost model, compared with the mFRS.</p><p><strong>Conclusion: </strong>Our novel machine learning model consistently outperformed the previously validated mFRS within internal and external validation cohorts, thereby demonstrating its generalizability and utility for enhancing prediction of CR-POPF.</p>","PeriodicalId":8017,"journal":{"name":"Annals of surgery","volume":null,"pages":null},"PeriodicalIF":7.5000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine Learning-based Prediction of Postoperative Pancreatic Fistula Following Pancreaticoduodenectomy.\",\"authors\":\"Arjun Verma, Jeffrey Balian, Joseph Hadaya, Alykhan Premji, Takayuki Shimizu, Timothy Donahue, Peyman Benharash\",\"doi\":\"10.1097/SLA.0000000000006123\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>The aim of this study was to develop a novel machine learning model to predict clinically relevant postoperative pancreatic fistula (CR-POPF) following pancreaticoduodenectomy (PD).</p><p><strong>Background: </strong>Accurate prognostication of CR-POPF may allow for risk stratification and adaptive treatment strategies for potential PD candidates. However, antecedent models, such as the modified Fistula Risk Score (mFRS), are limited by poor discrimination and calibration.</p><p><strong>Methods: </strong>All records entailing PD within the 2014 to 2018 American College of Surgeons National Surgical Quality Improvement Program (ACS NSQIP) were identified. In addition, patients undergoing PD at our institution between 2013 and 2021 were queried from our local data repository. An eXtreme Gradient Boosting (XGBoost) model was developed to estimate the risk of CR-POPF using data from the ACS NSQIP and evaluated using institutional data. Model discrimination was estimated using the area under the receiver operating characteristic (AUROC) and area under the precision recall curve (AUPRC).</p><p><strong>Results: </strong>Overall, 12,281 and 445 patients undergoing PD were identified within the 2014 to 2018 ACS NSQIP and our institutional registry, respectively. Application of the XGBoost and mFRS scores to the internal validation dataset revealed that the former model had significantly greater AUROC (0.72 vs 0.68, P <0.001) and AUPRC (0.22 vs 0.18, P <0.001). Within the external validation dataset, the XGBoost model remained superior to the mFRS with an AUROC of 0.79 (95% CI: 0.74-0.84) versus 0.75 (95% CI: 0.70-0.80, P <0.001). In addition, AUPRC was higher for the XGBoost model, compared with the mFRS.</p><p><strong>Conclusion: </strong>Our novel machine learning model consistently outperformed the previously validated mFRS within internal and external validation cohorts, thereby demonstrating its generalizability and utility for enhancing prediction of CR-POPF.</p>\",\"PeriodicalId\":8017,\"journal\":{\"name\":\"Annals of surgery\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of surgery\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1097/SLA.0000000000006123\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/11/10 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"SURGERY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of surgery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/SLA.0000000000006123","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/10 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"SURGERY","Score":null,"Total":0}
Machine Learning-based Prediction of Postoperative Pancreatic Fistula Following Pancreaticoduodenectomy.
Objective: The aim of this study was to develop a novel machine learning model to predict clinically relevant postoperative pancreatic fistula (CR-POPF) following pancreaticoduodenectomy (PD).
Background: Accurate prognostication of CR-POPF may allow for risk stratification and adaptive treatment strategies for potential PD candidates. However, antecedent models, such as the modified Fistula Risk Score (mFRS), are limited by poor discrimination and calibration.
Methods: All records entailing PD within the 2014 to 2018 American College of Surgeons National Surgical Quality Improvement Program (ACS NSQIP) were identified. In addition, patients undergoing PD at our institution between 2013 and 2021 were queried from our local data repository. An eXtreme Gradient Boosting (XGBoost) model was developed to estimate the risk of CR-POPF using data from the ACS NSQIP and evaluated using institutional data. Model discrimination was estimated using the area under the receiver operating characteristic (AUROC) and area under the precision recall curve (AUPRC).
Results: Overall, 12,281 and 445 patients undergoing PD were identified within the 2014 to 2018 ACS NSQIP and our institutional registry, respectively. Application of the XGBoost and mFRS scores to the internal validation dataset revealed that the former model had significantly greater AUROC (0.72 vs 0.68, P <0.001) and AUPRC (0.22 vs 0.18, P <0.001). Within the external validation dataset, the XGBoost model remained superior to the mFRS with an AUROC of 0.79 (95% CI: 0.74-0.84) versus 0.75 (95% CI: 0.70-0.80, P <0.001). In addition, AUPRC was higher for the XGBoost model, compared with the mFRS.
Conclusion: Our novel machine learning model consistently outperformed the previously validated mFRS within internal and external validation cohorts, thereby demonstrating its generalizability and utility for enhancing prediction of CR-POPF.
期刊介绍:
The Annals of Surgery is a renowned surgery journal, recognized globally for its extensive scholarly references. It serves as a valuable resource for the international medical community by disseminating knowledge regarding important developments in surgical science and practice. Surgeons regularly turn to the Annals of Surgery to stay updated on innovative practices and techniques. The journal also offers special editorial features such as "Advances in Surgical Technique," offering timely coverage of ongoing clinical issues. Additionally, the journal publishes monthly review articles that address the latest concerns in surgical practice.