{"title":"低势垒铁电的理论设计","authors":"Ting-Ting Zhong, Yaxin Gao, Yangyang Ren, Menghao Wu","doi":"10.1002/wcms.1682","DOIUrl":null,"url":null,"abstract":"<p>Ferroelectrics with electrically switchable spontaneous polarizations can be used for information storage, where a low switching barrier is favorable to reduce the energy cost and enhance the speed for data writing. Meanwhile their robustness at working temperature should be ensured, which is a challenge for the designs of low-barrier ferroelectrics. Here we review several types of ferroelectric mechanisms that may render both low switching barriers and room-temperature robustness, which have been theoretically proposed in previous studies. (1) The prediction of sliding ferroelectricity with ultralow switching barriers has been experimentally confirmed in a series of van der Waals layers, which may enable convenient electrical control of various physical properties in 2D materials, like magnetic, photovoltaic, valleytronic and topological properties. (2) Hydrogen-bonded ferroelectricity spontaneously formed by head-to-tail chains can be switched by proton-transfer crossing a low barrier, and a mechanism of ultra-high piezoelectricity utilizing the specific features of hydrogen bonding has been proposed. (3) High-ionicity ferroelectricity induced by covalent-like ionic bondings may entail high polarizations and low barriers during switching, which is attributed to the features of long-range Coulomb interaction, and the long ion-displacements crossing unitcell may give rise to unconventional ferroelectricity with quantized polarizations even in crystals of non-ferroelectric point groups. Those low-barrier ferroelectric mechanisms may bring in both new physics and technological advances, which are to be further explored.</p><p>This article is categorized under:\n </p>","PeriodicalId":236,"journal":{"name":"Wiley Interdisciplinary Reviews: Computational Molecular Science","volume":"13 6","pages":""},"PeriodicalIF":16.8000,"publicationDate":"2023-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Theoretical designs of low-barrier ferroelectricity\",\"authors\":\"Ting-Ting Zhong, Yaxin Gao, Yangyang Ren, Menghao Wu\",\"doi\":\"10.1002/wcms.1682\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Ferroelectrics with electrically switchable spontaneous polarizations can be used for information storage, where a low switching barrier is favorable to reduce the energy cost and enhance the speed for data writing. Meanwhile their robustness at working temperature should be ensured, which is a challenge for the designs of low-barrier ferroelectrics. Here we review several types of ferroelectric mechanisms that may render both low switching barriers and room-temperature robustness, which have been theoretically proposed in previous studies. (1) The prediction of sliding ferroelectricity with ultralow switching barriers has been experimentally confirmed in a series of van der Waals layers, which may enable convenient electrical control of various physical properties in 2D materials, like magnetic, photovoltaic, valleytronic and topological properties. (2) Hydrogen-bonded ferroelectricity spontaneously formed by head-to-tail chains can be switched by proton-transfer crossing a low barrier, and a mechanism of ultra-high piezoelectricity utilizing the specific features of hydrogen bonding has been proposed. (3) High-ionicity ferroelectricity induced by covalent-like ionic bondings may entail high polarizations and low barriers during switching, which is attributed to the features of long-range Coulomb interaction, and the long ion-displacements crossing unitcell may give rise to unconventional ferroelectricity with quantized polarizations even in crystals of non-ferroelectric point groups. Those low-barrier ferroelectric mechanisms may bring in both new physics and technological advances, which are to be further explored.</p><p>This article is categorized under:\\n </p>\",\"PeriodicalId\":236,\"journal\":{\"name\":\"Wiley Interdisciplinary Reviews: Computational Molecular Science\",\"volume\":\"13 6\",\"pages\":\"\"},\"PeriodicalIF\":16.8000,\"publicationDate\":\"2023-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wiley Interdisciplinary Reviews: Computational Molecular Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/wcms.1682\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley Interdisciplinary Reviews: Computational Molecular Science","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/wcms.1682","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Theoretical designs of low-barrier ferroelectricity
Ferroelectrics with electrically switchable spontaneous polarizations can be used for information storage, where a low switching barrier is favorable to reduce the energy cost and enhance the speed for data writing. Meanwhile their robustness at working temperature should be ensured, which is a challenge for the designs of low-barrier ferroelectrics. Here we review several types of ferroelectric mechanisms that may render both low switching barriers and room-temperature robustness, which have been theoretically proposed in previous studies. (1) The prediction of sliding ferroelectricity with ultralow switching barriers has been experimentally confirmed in a series of van der Waals layers, which may enable convenient electrical control of various physical properties in 2D materials, like magnetic, photovoltaic, valleytronic and topological properties. (2) Hydrogen-bonded ferroelectricity spontaneously formed by head-to-tail chains can be switched by proton-transfer crossing a low barrier, and a mechanism of ultra-high piezoelectricity utilizing the specific features of hydrogen bonding has been proposed. (3) High-ionicity ferroelectricity induced by covalent-like ionic bondings may entail high polarizations and low barriers during switching, which is attributed to the features of long-range Coulomb interaction, and the long ion-displacements crossing unitcell may give rise to unconventional ferroelectricity with quantized polarizations even in crystals of non-ferroelectric point groups. Those low-barrier ferroelectric mechanisms may bring in both new physics and technological advances, which are to be further explored.
期刊介绍:
Computational molecular sciences harness the power of rigorous chemical and physical theories, employing computer-based modeling, specialized hardware, software development, algorithm design, and database management to explore and illuminate every facet of molecular sciences. These interdisciplinary approaches form a bridge between chemistry, biology, and materials sciences, establishing connections with adjacent application-driven fields in both chemistry and biology. WIREs Computational Molecular Science stands as a platform to comprehensively review and spotlight research from these dynamic and interconnected fields.